我在Python 2.7中有以下Pandas Dataframe。
CODE:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(10,6),columns=list('ABCDEF'))
df.insert(0,'Category',['A','C','D','D','B','E','F','F','G','H'])
print df.groupby('Category').std()
以下是df
:
Category A B C D E F
A 0.500200 0.791039 0.498083 0.360320 0.965992 0.537068
C 0.295330 0.638823 0.133570 0.272600 0.647285 0.737942
D 0.912966 0.051288 0.055766 0.906490 0.078384 0.928538
D 0.416582 0.441684 0.605967 0.516580 0.458814 0.823692
B 0.714371 0.636975 0.153347 0.936872 0.000649 0.692558
E 0.639271 0.486151 0.860172 0.870838 0.831571 0.404813
F 0.375279 0.555228 0.020599 0.120947 0.896505 0.424233
F 0.952112 0.299520 0.150623 0.341139 0.186734 0.807519
G 0.384157 0.858391 0.278563 0.677627 0.998458 0.829019
H 0.109465 0.085861 0.440557 0.925500 0.767791 0.626924
我希望执行GROUP_BY
,然后计算平均值和标准差。在分组超过1行后,标准偏差有时计算 - 这意味着除以N-1
有时将0
除以NaN
将打印{{ 1}}。
以下是上述代码的输出:
输出:
A B C D E F
Category
A NaN NaN NaN NaN NaN NaN
B NaN NaN NaN NaN NaN NaN
C NaN NaN NaN NaN NaN NaN
D 0.350996 0.276052 0.389051 0.275708 0.269004 0.074137
E NaN NaN NaN NaN NaN NaN
F 0.407882 0.180813 0.091941 0.155699 0.501884 0.271025
G NaN NaN NaN NaN NaN NaN
H NaN NaN NaN NaN NaN NaN
对于我执行GROUP_BY
超过1行的情况,有没有办法跳过标准偏差并只返回值本身。例如,我希望得到这个:
渴望输出
A B C D E F
Category
A 0.500200 0.791039 0.498083 0.360320 0.965992 0.537068
B 0.714371 0.636975 0.153347 0.936872 0.000649 0.692558
C 0.295330 0.638823 0.133570 0.272600 0.647285 0.737942
D 0.350996 0.276052 0.389051 0.275708 0.269004 0.074137
E 0.639271 0.486151 0.860172 0.870838 0.831571 0.404813
F 0.407882 0.180813 0.091941 0.155699 0.501884 0.271025
G 0.384157 0.858391 0.278563 0.677627 0.998458 0.829019
H 0.109465 0.085861 0.440557 0.925500 0.767791 0.626924
Pandas可以做到这一点吗?
编辑: 要在上面创建精确的Pandas Dataframe,请选择它,复制到剪贴板,然后使用:
import pandas as pd
df = pd.read_clipboard(index_col='Category')
print df
print df.groupby('Category').std()
答案 0 :(得分:7)
不完全是问题中的问题,但如果您想避免NaN
值,请使用0 degrees of freedom计算人口标准差(即{{1} }),除以std(ddof=0)
:
N
零表示没有差异,因为组中只有一个值或所有相同的值。
(请注意,numpy.var
的>>> print(df.groupby('Category').std(ddof=0))
A B C D E F
Category
A 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
B 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
D 0.248192 0.195198 0.275101 0.194955 0.190215 0.052423
E 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
F 0.288417 0.127854 0.065012 0.110096 0.354885 0.191643
G 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
默认值为零,因此与pandas的默认值1不同。
答案 1 :(得分:4)
您可以fillna
替换丢失的值 - 使用每个组的最后一个值传递DataFrame
。
In [86]: (df.groupby('Category').std()
...: .fillna(df.groupby('Category').last()))
Out[86]:
A B C D E F
Category
A 0.500200 0.791039 0.498083 0.360320 0.965992 0.537068
B 0.714371 0.636975 0.153347 0.936872 0.000649 0.692558
C 0.295330 0.638823 0.133570 0.272600 0.647285 0.737942
D 0.350996 0.276052 0.389051 0.275708 0.269005 0.074137
E 0.639271 0.486151 0.860172 0.870838 0.831571 0.404813
F 0.407883 0.180813 0.091941 0.155699 0.501884 0.271024
G 0.384157 0.858391 0.278563 0.677627 0.998458 0.829019
H 0.109465 0.085861 0.440557 0.925500 0.767791 0.626924