Pandas Standard Deviation返回NaN

时间:2015-08-21 01:21:28

标签: python pandas matplotlib group-by

我在Python 2.7中有以下Pandas Dataframe。

CODE:

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(10,6),columns=list('ABCDEF'))
df.insert(0,'Category',['A','C','D','D','B','E','F','F','G','H'])
print df.groupby('Category').std()

以下是df

Category         A         B         C         D         E         F
       A  0.500200  0.791039  0.498083  0.360320  0.965992  0.537068
       C  0.295330  0.638823  0.133570  0.272600  0.647285  0.737942
       D  0.912966  0.051288  0.055766  0.906490  0.078384  0.928538
       D  0.416582  0.441684  0.605967  0.516580  0.458814  0.823692
       B  0.714371  0.636975  0.153347  0.936872  0.000649  0.692558
       E  0.639271  0.486151  0.860172  0.870838  0.831571  0.404813
       F  0.375279  0.555228  0.020599  0.120947  0.896505  0.424233
       F  0.952112  0.299520  0.150623  0.341139  0.186734  0.807519
       G  0.384157  0.858391  0.278563  0.677627  0.998458  0.829019
       H  0.109465  0.085861  0.440557  0.925500  0.767791  0.626924

我希望执行GROUP_BY,然后计算平均值和标准差。在分组超过1行后,标准偏差有时计算 - 这意味着除以N-1 有时0除以NaN将打印{{ 1}}。

以下是上述代码的输出:

输出:

                A         B         C         D         E         F
Category                                                            
A              NaN       NaN       NaN       NaN       NaN       NaN
B              NaN       NaN       NaN       NaN       NaN       NaN
C              NaN       NaN       NaN       NaN       NaN       NaN
D         0.350996  0.276052  0.389051  0.275708  0.269004  0.074137
E              NaN       NaN       NaN       NaN       NaN       NaN
F         0.407882  0.180813  0.091941  0.155699  0.501884  0.271025
G              NaN       NaN       NaN       NaN       NaN       NaN
H              NaN       NaN       NaN       NaN       NaN       NaN

对于我执行GROUP_BY超过1行的情况,有没有办法跳过标准偏差并只返回值本身。例如,我希望得到这个:

渴望输出

                 A         B         C         D         E         F
Category                                                            
A         0.500200  0.791039  0.498083  0.360320  0.965992  0.537068
B         0.714371  0.636975  0.153347  0.936872  0.000649  0.692558
C         0.295330  0.638823  0.133570  0.272600  0.647285  0.737942
D         0.350996  0.276052  0.389051  0.275708  0.269004  0.074137
E         0.639271  0.486151  0.860172  0.870838  0.831571  0.404813
F         0.407882  0.180813  0.091941  0.155699  0.501884  0.271025
G         0.384157  0.858391  0.278563  0.677627  0.998458  0.829019
H         0.109465  0.085861  0.440557  0.925500  0.767791  0.626924

Pandas可以做到这一点吗?

编辑: 要在上面创建精确的Pandas Dataframe,请选择它,复制到剪贴板,然后使用:

import pandas as pd
df = pd.read_clipboard(index_col='Category')
print df
print df.groupby('Category').std()

2 个答案:

答案 0 :(得分:7)

不完全是问题中的问题,但如果您想避免NaN值,请使用0 degrees of freedom计算人口标准差(即{{1} }),除以std(ddof=0)

N

零表示没有差异,因为组中只有一个值或所有相同的值。

(请注意,numpy.var>>> print(df.groupby('Category').std(ddof=0)) A B C D E F Category A 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 B 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 D 0.248192 0.195198 0.275101 0.194955 0.190215 0.052423 E 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 F 0.288417 0.127854 0.065012 0.110096 0.354885 0.191643 G 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 默认值为零,因此与pandas的默认值1不同。

答案 1 :(得分:4)

您可以fillna替换丢失的值 - 使用每个组的最后一个值传递DataFrame

In [86]: (df.groupby('Category').std()
    ...:    .fillna(df.groupby('Category').last()))

Out[86]: 
                 A         B         C         D         E         F
Category                                                            
A         0.500200  0.791039  0.498083  0.360320  0.965992  0.537068
B         0.714371  0.636975  0.153347  0.936872  0.000649  0.692558
C         0.295330  0.638823  0.133570  0.272600  0.647285  0.737942
D         0.350996  0.276052  0.389051  0.275708  0.269005  0.074137
E         0.639271  0.486151  0.860172  0.870838  0.831571  0.404813
F         0.407883  0.180813  0.091941  0.155699  0.501884  0.271024
G         0.384157  0.858391  0.278563  0.677627  0.998458  0.829019
H         0.109465  0.085861  0.440557  0.925500  0.767791  0.626924