我有一个已融化的数据集:
ID variable mean sd sem
1 0001 1 0.000000000 0.000000000 0.000000000
2 0001 2 0.000000000 0.000000000 0.000000000
3 0001 3 1.374013050 0.083787761 0.001524927
4 0001 4 1.622939744 0.232510250 0.004231658
5 0001 5 0.004092427 0.004076841 0.000074198
每个50个唯一ID共有120个变量。
[根据评论编辑]
我想为每个变量创建一个单独的图,显示平均值& sem为每个ID。我想订购手段
第一: 我想为一个变量创建一个图:
ggplot(subset(dataset, variable=="1"), aes(x = ID, y = mean)) +
geom_bar(position = position_dodge(), stat = "identity") +
geom_errorbar(aes(ymin=mean-sem, ymax=mean+sem)) +
theme(axis.title.x = element_text(face="bold",size=16),
axis.text.x = element_text(angle=90, colour = "black", vjust=1, hjust = 1, size=14),
axis.text.y = element_text(colour = "black", size=14),
axis.title.y = element_text(face="bold", size=16),
plot.title = element_text(size = 18),
legend.title = element_text(size=14),
legend.text = element_text(size = 13),
legend.position="right",
strip.text.x = element_text(size=12, face="bold"),
strip.text.y = element_text(size=12, face="bold"),
strip.background = element_rect(colour="black")) + ylab("Mean") + xlab("ID")
现在,我想对所有120个变量做同样的事情。如何初始化for语句以为每个变量创建一个图?
我试过了:
for(i in 1:120)
{unique <- unique(test$variable)
ggplot(unique[i], aes(x = KGID, y = mean))
但这不起作用。我希望ggplot()获取每个唯一ID并制作图。
答案 0 :(得分:2)
我建议您创建所有图表,然后保存它们。
# par() works for base graphics, it does nothing for ggplot
# par(mfrow=c(3, 4)) #just try to plot 12 variables right now
创建图:
# initialize a list to put the plots in
my_plots = list()
u <- unique(dataset$variable) #Get all unique values for variable
for(i in 1:length(u)) {
# I just put your data subset inside the plot
my_plots[[i]] = ggplot(test[dataset$variable==u[i], ],
aes(x = ID, y = mean)) +
geom_bar(position = position_dodge(), stat = "identity") +
geom_errorbar(aes(ymin=mean-sem, ymax=mean+sem)) +
# I deleted all your theme stuff to keep this minimal and
# easy to understand, you can add it back in
ylab("Mean") + xlab("ID")
}
现在您可以在R会话中打印它们,检查它们,确保它们看起来很好
print(my_plots[[1]])
print(my_plots[[8]])
将它们保存在for循环中:(您也可以使用lapply
)
for (i in 1:length(my_plots)) {
ggsave(filename = paste0("plot_", i, ".png"),
# you can specify height, width, cairodevice, etc.
plot = my_plots[[i]])
}
但是,如果我是你,我认为分面可能会更好:
ggplot(dat, aes(x = ID, y = mean)) +
geom_bar(position = position_dodge(), stat = "identity") +
geom_errorbar(aes(ymin=mean-sem, ymax=mean+sem)) +
ylab("Mean") + xlab("ID") +
facet_wrap(~ variable)
答案 1 :(得分:1)
一个懒惰的选项(使用mtcars作为例子)
p = ggplot(mtcars, aes(x = hp, y = drat)) + geom_point()
png("plot%03d.png")
plyr::d_ply(mtcars, "carb", "%+%", e1 = p, .print=TRUE)
dev.off()
或者,分两步,
pl = plyr::dlply(mtcars, "carb", "%+%", e1 = p)
ggsave("plot%03d.png", gridExtra::marrangeGrob(pl, nrow=1, ncol=1))
答案 2 :(得分:0)