numpy“空切片的意思”。警告

时间:2015-08-04 16:42:40

标签: python numpy suppress-warnings

更新(真实错误)

我错误地识别了错误的来源。这是我的全部功能(对不起,如果有些线路模糊不清......)

def removeLines(input,CRVAL1,CDELT1): #Masks out the Balmer lines from the spectrum
    #Numbers 4060, 4150, 4300, 4375, 4800, and 4950 obtained from fit_RVs.pro.
    #Other numbers obtained from the Balmer absorption series lines

    for i in range(0,len(lineWindows),2):
        left = toIndex(lineWindows[i],CRVAL1,CDELT1)
        right = toIndex(lineWindows[i+1],CRVAL1,CDELT1)

        print "left = ", left
        print "right = ", right
        print "20 from right =\n", input[right:right+20]
        print "mean of 20 = ", numpy.mean(input[right:right+20])

        #Find the averages on the left and right sides
        left_avg = numpy.mean(input[left-20:left])
        right_avg = numpy.mean(input[right:right+20])   #<--- NOT here

        print "right_avg = ", right_avg

        #Find the slope between the averages
        slope = (left_avg - right_avg)/(left - right)

        #Find the y-intercept of the line conjoining the averages
        bval = ((left_avg - slope*left) + (right_avg - slope*right)) / 2

        for j in range(left,right):     #Redefine the data to follow the line conjoining
            input[j] = slope*j + bval   #the sides of the peaks

    left = int(input[0])
    left_avg = int(input[0])
    right = toIndex(lineWindows[0],CRVAL1,CDELT1)
    right_avg = numpy.mean(input[right:right+20])   #<---- THIS IS WHERE IT IS!
    slope = (left_avg - right_avg)/(left - right)
    bval = ((left_avg - slope*left) + (right_avg - slope*right)) / 2

    for i in range(left, right):
        input[i] = slope*i + bval
    return input

我已经调查了这个问题并找到了答案,该答案发布在下面(不在这篇文章中)。

错误(愚蠢的错误)

#left  = An index in the data (on the 'left' side)
#right = An index in the data (on the 'right' side)
#input = The data array

print "left = ", left
print "right = ", right
print "20 from right =\n", input[right:right+20]
print "mean of 20 = ", numpy.mean(input[right:right+20])

#Find the averages on the left and right sides
left_avg = numpy.mean(input[left-20:left])
right_avg = numpy.mean(input[right:right+20])

产生了输出

left =  1333
right =  1490
20 from right =
[ 0.14138737  0.14085886  0.14038289  0.14045525  0.14078836  0.14083192
  0.14072289  0.14082283  0.14058594  0.13977806  0.13955595  0.13998236
  0.1400764   0.1399636   0.14025062  0.14074247  0.14094831  0.14078569
  0.14001536  0.13895717]
mean of 20 =  0.140395
Traceback (most recent call last):
...
  File "getRVs.py", line 201, in removeLines
    right_avg = numpy.mean(input[right:right+20])
  File "C:\Users\MyName\Anaconda\lib\site-packages\numpy\core\fromnumeric.py", line 2735, in mean
    out=out, keepdims=keepdims)
  File "C:\Users\MyName\Anaconda\lib\site-packages\numpy\core\_methods.py", line 59, in _mean
    warnings.warn("Mean of empty slice.", RuntimeWarning)
RuntimeWarning: Mean of empty slice.

当我打印它时,numpy.mean似乎正确运行,但是当我将它分配给一个值时,它会有所不同。任何反馈都将非常感激。感谢您抽出宝贵时间阅读我的问题。

简要说明

简而言之,我正在编写处理科学数据的代码,部分代码涉及大约20个值的平均值。

#left  = An index in the data (on the 'left' side)
#right = An index in the data (on the 'right' side)
#input = The data array

#Find the averages on the left and right sides
left_avg = numpy.mean(input[left-20:left])
right_avg = numpy.mean(input[right:right+20])

此代码返回一个numpy“空切片的平均值”。警告并恼人地将它打印在我宝贵的输出中!我决定尝试跟踪警告的来源,例如here,所以我放置了

import warnings
warnings.simplefilter("error")

在我的代码顶部,然后返回以下剪切的Traceback:

  File "getRVs.py", line 201, in removeLines
    right_avg = numpy.mean(input[right:right+20])
  File "C:\Users\MyName\Anaconda\lib\site-packages\numpy\core\fromnumeric.py", line 2735, in mean
    out=out, keepdims=keepdims)
  File "C:\Users\MyName\Anaconda\lib\site-packages\numpy\core\_methods.py", line 59, in _mean
    warnings.warn("Mean of empty slice.", RuntimeWarning)
RuntimeWarning: Mean of empty slice.

我省略了大约2/3的Traceback,因为它通过大约5个难以解释的函数,不影响数据的可读性或大小。

所以我决定打印出整个操作,看看right_avg是否真的在尝试一个空切片的numpy.mean ......那就是当事情变得非常奇怪时

2 个答案:

答案 0 :(得分:4)

你好dingbat!答案很明显,不是吗?您明确错误地标识了错误所在的代码行。您需要做的是为特定情况编写代码,其中数据中考虑的中心点周围的窗口(leftright边)太靠近边缘数据阵列

def removeLines(input,CRVAL1,CDELT1): #Masks out the Balmer lines from the spectrum

    for i in range(0,len(lineWindows),2):
        left = toIndex(lineWindows[i],CRVAL1,CDELT1)
        right = toIndex(lineWindows[i+1],CRVAL1,CDELT1)

        #Find the averages on the left and right sides
        left_avg = numpy.mean(input[left-20:left])
        right_avg = numpy.mean(input[right:right+20])

        #Find the slope between the averages
        slope = (left_avg - right_avg)/(left - right)

        #Find the y-intercept of the line conjoining the averages
        bval = ((left_avg - slope*left) + (right_avg - slope*right)) / 2

        for j in range(left,right):     #Redefine the data to follow the line conjoining
            input[j] = slope*j + bval   #the sides of the peaks

    left = 0
    left_avg = int(input[0])

    if toIndex(lineWindows[0],CRVAL1,CDELT1) < 0: right = 0
    else: right = toIndex(lineWindows[0],CRVAL1,CDELT1)

    right_avg = numpy.mean(input[right:right+20])
    slope = (left_avg - right_avg)/(left - right)
    bval = ((left_avg - slope*left) + (right_avg - slope*right)) / 2

    for i in range(left, right):
        input[i] = slope*i + bval
    return input

只需更改此

即可
right = toIndex(lineWindows[0],CRVAL1,CDELT1)    #Error occurs where right = -10
right_avg = numpy.mean(input[right:right+20])    #Index of -10? Yeah, right.

到这个

if toIndex(lineWindows[0],CRVAL1,CDELT1) < 0: right = 0    #Index 0, much better!
else: right = toIndex(lineWindows[0],CRVAL1,CDELT1)    #Leave it alone if it isn't a problem.

right_avg = numpy.mean(input[right:right+20])

此外,您对left = int(input[0])完全错误,因此我将其更改为left = 0谁知道这个草率,草率的代码会产生什么其他简单错误?请稍等一下,然后发布到Stack Overflow吧!

答案 1 :(得分:1)

我无法重现您的错误。你使用的是最新的numpy版本吗? 但是,您可以通过使用关键字ignore(请参阅https://docs.python.org/2/library/warnings.html#temporarily-suppressing-warnings

来取消警告

此错误通常表示将空列表传递给函数。

>>> a = []

>>> import numpy
>>> numpy.mean(a)
/shahlab/pipelines/apps_centos6/Python-2.7.10/lib/python2.7/site-packages/numpy/core/_methods.py:59: RuntimeWarning: Mean of empty slice.
  warnings.warn("Mean of empty slice.", RuntimeWarning)
/shahlab/pipelines/apps_centos6/Python-2.7.10/lib/python2.7/site-packages/numpy/core/_methods.py:71: RuntimeWarning: invalid value encountered in double_scalars
  ret = ret.dtype.type(ret / rcount)
nan
>>> print numpy.mean(a)
nan

>>> import warnings
>>> warnings.simplefilter("ignore")
>>> numpy.mean(a)
nan

>>> a=[ 0.14138737, 0.14085886, 0.14038289, 0.14045525, 0.14078836, 0.14083192, 0.14072289, 0.14082283, 0.14058594, 0.13977806, 0.13955595, 0.13998236, 0.1400764,  0.1399636,  0.14025062, 0.14074247, 0.14094831, 0.14078569, 0.14001536, 0.13895717]
>>> numpy.mean(a)
0.140394615
>>> x = numpy.mean(a)
>>> print x
0.140394615
>>> numpy.__version__
'1.9.2'

希望有所帮助。