如何在spark sql中创建永久表

时间:2015-07-31 06:23:20

标签: java apache-spark apache-spark-sql

在我的项目中,我将数据从MongoDB传输到SparkSQL表,用于基于SQL的查询。但是Spark SQL允许我创建临时文件。当我想查询某些内容时,执行时间非常长,因为数据传输和映射操作需要花费太多时间。

那么,我可以减少执行时间吗?我可以创建永久的Spark SQL表吗?我可以使用JDBC查询永久表吗?

我正在添加我的代码和执行时间结果。我在独立模式下做所有事情。

package com.mongodb.spark.sql;

import java.util.List;

import org.apache.hadoop.conf.Configuration;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;
import org.bson.BSONObject;

import com.mongodb.hadoop.MongoInputFormat;
import com.mongodb.spark.demo.Observation;
import com.mongodb.spark.demo.Sensor;

import scala.Tuple2;

public class SparkSqlMongo {

public static void main(String[] args) {

    Configuration conf = new Configuration();

    conf.set("mongo.job.input.format", "com.mongodb.hadoop.MongoInputFormat");
    conf.set("mongo.input.uri", "mongodb://localhost:27017/test.observations");

    Configuration sensConf = new Configuration();

    sensConf.set("mongo.job.input.format", "com.mongodb.hadoop.MongoInputFormat");
    sensConf.set("mongo.input.uri", "mongodb://localhost:27017/test.sens");

    SparkConf sconf = new SparkConf().setMaster("local[2]").setAppName("SQL DENEME").set("nsmc.connection.host",
            "mongodb:");

    JavaSparkContext sc = new JavaSparkContext(sconf);
    SQLContext sql = new SQLContext(sc);

    JavaRDD<Observation> obs = sc.newAPIHadoopRDD(conf, MongoInputFormat.class, Object.class, BSONObject.class)
            .map(new Function<Tuple2<Object, BSONObject>, Observation>() {

                private static final long serialVersionUID = 1L;

                @Override
                public Observation call(Tuple2<Object, BSONObject> v1) throws Exception {

                    int id = (int) v1._2.get("_id");
                    double value = (double) v1._2.get("Value");
                    // Date time = (Date) v1._2.get("Time");
                    int sensor = (int) v1._2.get("SensorId");
                    int stream = (int) v1._2.get("DataStreamId");

                    Observation obs = new Observation(id, value, sensor, stream);
                    return obs;

                }
            });

    DataFrame obsi = sql.createDataFrame(obs, Observation.class);

    obsi.registerTempTable("obsi");

    JavaRDD<Sensor> sens = sc.newAPIHadoopRDD(sensConf, MongoInputFormat.class, Object.class, BSONObject.class)
            .map(new Function<Tuple2<Object, BSONObject>, Sensor>() {

                /**
                 * 
                 */
                private static final long serialVersionUID = 1L;

                @Override
                public Sensor call(Tuple2<Object, BSONObject> v1) throws Exception {

                    int id = (int) v1._2.get("_id");
                    String name = (String) v1._2.get("Name");
                    String description = (String) v1._2.get("Description");

                    Sensor s = new Sensor(id, name, description);

                    System.out.println(s.getName());
                    return s;

                }
            });

    DataFrame sensi = sql.createDataFrame(sens, Sensor.class);

    sensi.registerTempTable("sensi");

    sensi.show();

    long start = System.currentTimeMillis();

    DataFrame obser = sql
            .sql("SELECT obsi.value, obsi.id, sensi.name FROM obsi, sensi WHERE obsi.sensorID = sensi.id  and sensi.id = 107")
            .cache();
    long stop = System.currentTimeMillis();

    // System.out.println("count ====>>> " + a.toString());
    System.out.println("toplam sorgu zamani : " + (stop - start));
    ;
    //
    // while(!obser.equals(null)){
    // System.out.println(obser);
    // }

    List<String> names = obser.javaRDD().map(new Function<Row, String>() {

        private static final long serialVersionUID = 1L;

        public String call(Row row) {

            // System.out.println(row);
            // System.out.println("value : " + row.getDouble(0) + " id : " +
            // row.getInt(1) + " name : " + row.getString(0));
            return "Name: " + row;
        }
    }).collect();

}

}

对于约5M观察和1K sns数据,所有执行时间约为120秒。我加入这些表格,这个执行时间非常高且不可接受。

2 个答案:

答案 0 :(得分:5)

  1. 是的,您可以按Caching your Table,Dataframe或Rdd。
  2. 改进程序执行时间
  3. 并且,如果您希望将数据保存为永久表而不是使用df.saveAsTable方法,但应通过HiveContext创建数据框。
  4. 对于JDBC连接,您需要启动Thrift service,然后可以在寄存器表上执行Spark Sql

答案 1 :(得分:2)

只要创建它们的spark上下文可用,Spark SQL就不会在其中发生数据库数据操作。有几个spark作业服务器实现可以使您保存一个作业的结果并针对同一数据集发送其他作业。它仍然是瞬态的,如果服务器(即火花上下文)关闭,则必须重新加载

那说你可以坚持计算的结果并稍后检索(在Mongo中,回到Hadoop /其他文件系统上的文件中)