我有以下2个data.frames:
a1 <- data.frame(a = 1:5, b=letters[1:5])
a2 <- data.frame(a = 1:3, b=letters[1:3])
我想找到a1没有的行a1。
此类操作是否有内置功能?
(p.s:我确实为它编写了一个解决方案,如果有人已经制作了更精心设计的代码,我感到很好奇)
这是我的解决方案:
a1 <- data.frame(a = 1:5, b=letters[1:5])
a2 <- data.frame(a = 1:3, b=letters[1:3])
rows.in.a1.that.are.not.in.a2 <- function(a1,a2)
{
a1.vec <- apply(a1, 1, paste, collapse = "")
a2.vec <- apply(a2, 1, paste, collapse = "")
a1.without.a2.rows <- a1[!a1.vec %in% a2.vec,]
return(a1.without.a2.rows)
}
rows.in.a1.that.are.not.in.a2(a1,a2)
答案 0 :(得分:128)
SQLDF
提供了一个很好的解决方案
a1 <- data.frame(a = 1:5, b=letters[1:5])
a2 <- data.frame(a = 1:3, b=letters[1:3])
require(sqldf)
a1NotIna2 <- sqldf('SELECT * FROM a1 EXCEPT SELECT * FROM a2')
两个数据框中的行:
a1Ina2 <- sqldf('SELECT * FROM a1 INTERSECT SELECT * FROM a2')
dplyr
的新版本有一个函数anti_join
,用于完全进行这些比较
require(dplyr)
anti_join(a1,a2)
并semi_join
过滤a1
中同样位于a2
semi_join(a1,a2)
答案 1 :(得分:80)
这不会直接回答您的问题,但它会为您提供相同的元素。这可以通过Paul Murrell的包compare
完成:
library(compare)
a1 <- data.frame(a = 1:5, b = letters[1:5])
a2 <- data.frame(a = 1:3, b = letters[1:3])
comparison <- compare(a1,a2,allowAll=TRUE)
comparison$tM
# a b
#1 1 a
#2 2 b
#3 3 c
函数compare
在允许哪种比较方面为您提供了很大的灵活性(例如,改变每个向量的元素顺序,改变变量的顺序和名称,缩短变量,改变字符串的大小写) 。由此,您应该能够找出其中一个或哪个缺失的东西。例如(这不是很优雅):
difference <-
data.frame(lapply(1:ncol(a1),function(i)setdiff(a1[,i],comparison$tM[,i])))
colnames(difference) <- colnames(a1)
difference
# a b
#1 4 d
#2 5 e
答案 2 :(得分:56)
在 dplyr :
setdiff(a1,a2)
基本上,setdiff(bigFrame, smallFrame)
会在第一个表中为您提供额外的记录。
在SQLverse中,这称为
有关所有加入选项和设置主题的详细说明,这是我迄今为止看到的最佳摘要之一:http://www.vertabelo.com/blog/technical-articles/sql-joins
但回到这个问题 - 以下是使用OP数据时setdiff()
代码的结果:
> a1
a b
1 1 a
2 2 b
3 3 c
4 4 d
5 5 e
> a2
a b
1 1 a
2 2 b
3 3 c
> setdiff(a1,a2)
a b
1 4 d
2 5 e
甚至anti_join(a1,a2)
也会得到相同的结果
有关详细信息:https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
答案 3 :(得分:39)
对于这个特定目的来说肯定没有效率,但我在这些情况下经常做的是在每个data.frame中插入指标变量然后合并:
a1$included_a1 <- TRUE
a2$included_a2 <- TRUE
res <- merge(a1, a2, all=TRUE)
included_a1中的缺失值将记录a1中缺少哪些行。同样适用于a2。
您的解决方案的一个问题是列订单必须匹配。另一个问题是很容易想象在实际上不同的情况下将行编码为相同的情况。使用合并的好处是,您可以免费获得良好解决方案所需的所有错误检查。
答案 4 :(得分:23)
我写了一个包(https://github.com/alexsanjoseph/compareDF)因为我有同样的问题。
> df1 <- data.frame(a = 1:5, b=letters[1:5], row = 1:5)
> df2 <- data.frame(a = 1:3, b=letters[1:3], row = 1:3)
> df_compare = compare_df(df1, df2, "row")
> df_compare$comparison_df
row chng_type a b
1 4 + 4 d
2 5 + 5 e
一个更复杂的例子:
library(compareDF)
df1 = data.frame(id1 = c("Mazda RX4", "Mazda RX4 Wag", "Datsun 710",
"Hornet 4 Drive", "Duster 360", "Merc 240D"),
id2 = c("Maz", "Maz", "Dat", "Hor", "Dus", "Mer"),
hp = c(110, 110, 181, 110, 245, 62),
cyl = c(6, 6, 4, 6, 8, 4),
qsec = c(16.46, 17.02, 33.00, 19.44, 15.84, 20.00))
df2 = data.frame(id1 = c("Mazda RX4", "Mazda RX4 Wag", "Datsun 710",
"Hornet 4 Drive", " Hornet Sportabout", "Valiant"),
id2 = c("Maz", "Maz", "Dat", "Hor", "Dus", "Val"),
hp = c(110, 110, 93, 110, 175, 105),
cyl = c(6, 6, 4, 6, 8, 6),
qsec = c(16.46, 17.02, 18.61, 19.44, 17.02, 20.22))
> df_compare$comparison_df
grp chng_type id1 id2 hp cyl qsec
1 1 - Hornet Sportabout Dus 175 8 17.02
2 2 + Datsun 710 Dat 181 4 33.00
3 2 - Datsun 710 Dat 93 4 18.61
4 3 + Duster 360 Dus 245 8 15.84
5 7 + Merc 240D Mer 62 4 20.00
6 8 - Valiant Val 105 6 20.22
该软件包还有一个用于快速检查的html_output命令
答案 5 :(得分:11)
您可以使用daff
package(使用daff.js
library封装V8
package):
library(daff)
diff_data(data_ref = a2,
data = a1)
产生以下差异对象:
Daff Comparison: ‘a2’ vs. ‘a1’
First 6 and last 6 patch lines:
@@ a b
1 ... ... ...
2 3 c
3 +++ 4 d
4 +++ 5 e
5 ... ... ...
6 ... ... ...
7 3 c
8 +++ 4 d
9 +++ 5 e
差异格式在Coopy highlighter diff format for tables中描述,应该是不言自明的。第一列+++
中包含@@
的行是a1
中的新行,而不是a2
中的行。
差异对象可用于patch_data()
,使用write_diff()
存储差异以进行文档记录,或使用render_diff()
显示差异:
render_diff(
diff_data(data_ref = a2,
data = a1)
)
生成一个整洁的HTML输出:
答案 6 :(得分:9)
答案 7 :(得分:8)
我调整了merge
函数来获得此功能。在较大的数据帧上,它使用的内存少于完整合并解决方案。我可以使用关键列的名称。
另一种解决方案是使用库prob
。
# Derived from src/library/base/R/merge.R
# Part of the R package, http://www.R-project.org
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# http://www.r-project.org/Licenses/
XinY <-
function(x, y, by = intersect(names(x), names(y)), by.x = by, by.y = by,
notin = FALSE, incomparables = NULL,
...)
{
fix.by <- function(by, df)
{
## fix up 'by' to be a valid set of cols by number: 0 is row.names
if(is.null(by)) by <- numeric(0L)
by <- as.vector(by)
nc <- ncol(df)
if(is.character(by))
by <- match(by, c("row.names", names(df))) - 1L
else if(is.numeric(by)) {
if(any(by < 0L) || any(by > nc))
stop("'by' must match numbers of columns")
} else if(is.logical(by)) {
if(length(by) != nc) stop("'by' must match number of columns")
by <- seq_along(by)[by]
} else stop("'by' must specify column(s) as numbers, names or logical")
if(any(is.na(by))) stop("'by' must specify valid column(s)")
unique(by)
}
nx <- nrow(x <- as.data.frame(x)); ny <- nrow(y <- as.data.frame(y))
by.x <- fix.by(by.x, x)
by.y <- fix.by(by.y, y)
if((l.b <- length(by.x)) != length(by.y))
stop("'by.x' and 'by.y' specify different numbers of columns")
if(l.b == 0L) {
## was: stop("no columns to match on")
## returns x
x
}
else {
if(any(by.x == 0L)) {
x <- cbind(Row.names = I(row.names(x)), x)
by.x <- by.x + 1L
}
if(any(by.y == 0L)) {
y <- cbind(Row.names = I(row.names(y)), y)
by.y <- by.y + 1L
}
## create keys from 'by' columns:
if(l.b == 1L) { # (be faster)
bx <- x[, by.x]; if(is.factor(bx)) bx <- as.character(bx)
by <- y[, by.y]; if(is.factor(by)) by <- as.character(by)
} else {
## Do these together for consistency in as.character.
## Use same set of names.
bx <- x[, by.x, drop=FALSE]; by <- y[, by.y, drop=FALSE]
names(bx) <- names(by) <- paste("V", seq_len(ncol(bx)), sep="")
bz <- do.call("paste", c(rbind(bx, by), sep = "\r"))
bx <- bz[seq_len(nx)]
by <- bz[nx + seq_len(ny)]
}
comm <- match(bx, by, 0L)
if (notin) {
res <- x[comm == 0,]
} else {
res <- x[comm > 0,]
}
}
## avoid a copy
## row.names(res) <- NULL
attr(res, "row.names") <- .set_row_names(nrow(res))
res
}
XnotinY <-
function(x, y, by = intersect(names(x), names(y)), by.x = by, by.y = by,
notin = TRUE, incomparables = NULL,
...)
{
XinY(x,y,by,by.x,by.y,notin,incomparables)
}
答案 8 :(得分:5)
您的示例数据没有任何重复项,但您的解决方案会自动处理它们。这意味着在重复的情况下,潜在的某些答案可能与您的功能结果不匹配 这是我的解决方案,它以与您相同的方式解决重复问题。它也很棒!
~/.rvm/gems
需要data.table 1.9.8 +
答案 9 :(得分:2)
也许它太简单了,但是我使用了这个解决方案,当我有一个可以用来比较数据集的主键时,我发现它非常有用。希望它可以提供帮助。
a1 <- data.frame(a = 1:5, b = letters[1:5])
a2 <- data.frame(a = 1:3, b = letters[1:3])
different.names <- (!a1$a %in% a2$a)
not.in.a2 <- a1[different.names,]
答案 10 :(得分:1)
另一种基于plyr中match_df的解决方案。 这是plyr的match_df:
match_df <- function (x, y, on = NULL)
{
if (is.null(on)) {
on <- intersect(names(x), names(y))
message("Matching on: ", paste(on, collapse = ", "))
}
keys <- join.keys(x, y, on)
x[keys$x %in% keys$y, , drop = FALSE]
}
我们可以修改它以否定:
library(plyr)
negate_match_df <- function (x, y, on = NULL)
{
if (is.null(on)) {
on <- intersect(names(x), names(y))
message("Matching on: ", paste(on, collapse = ", "))
}
keys <- join.keys(x, y, on)
x[!(keys$x %in% keys$y), , drop = FALSE]
}
然后:
diff <- negate_match_df(a1,a2)
答案 11 :(得分:1)
使用subset
:
missing<-subset(a1, !(a %in% a2$a))
答案 12 :(得分:1)
以下代码同时使用data.table
和fastmatch
来提高速度。
library("data.table")
library("fastmatch")
a1 <- setDT(data.frame(a = 1:5, b=letters[1:5]))
a2 <- setDT(data.frame(a = 1:3, b=letters[1:3]))
compare_rows <- a1$a %fin% a2$a
# the %fin% function comes from the `fastmatch` package
added_rows <- a1[which(compare_rows == FALSE)]
added_rows
# a b
# 1: 4 d
# 2: 5 e
答案 13 :(得分:0)
真正快速的比较,以计算差异。 使用特定的列名。
df1 = pd.DataFrame(targetTimes, columns=['new'])
df = pd.merge_asof(df1,
df,
left_on='new',
right_on='TimeStamp',
direction='nearest')
print (df)
new TimeStamp
0 120 100
1 130 150
2 180 180
3 187 185
对于完整的数据框,请不要提供列名或索引名
colname = "CreatedDate" # specify column name
index <- match(colname, names(source_df)) # get index name for column name
sel <- source_df[, index] == target_df[, index] # get differences, gives you dataframe with TRUE and FALSE values
table(sel)["FALSE"] # count of differences
table(sel)["TRUE"] # count of matches