我在使用Assimp加载网格时遇到问题。即使在环境照明后,也不会显示某些面部。我正在使用learnopengl.com教程中提供的代码来加载网格物体。我在下面包含了我的Mesh和Model源以及截图。如果有人可以帮忙解决问题,我真的非常感激。
Mesh.h
#pragma once
// Std. Includes
#include <string>
#include <fstream>
#include <sstream>
#include <iostream>
#include <vector>
using namespace std;
// GL Includes
#include <GL/glew.h> // Contains all the necessery OpenGL includes
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
struct Vertex {
// Position
glm::vec3 Position;
// Normal
glm::vec3 Normal;
// TexCoords
glm::vec2 TexCoords;
};
struct Texture {
GLuint id;
string type;
aiString path;
};
class Mesh {
public:
/* Mesh Data */
vector<Vertex> vertices;
vector<GLuint> indices;
vector<Texture> textures;
/* Functions */
// Constructor
Mesh(vector<Vertex> vertices, vector<GLuint> indices, vector<Texture> textures)
{
this->vertices = vertices;
this->indices = indices;
this->textures = textures;
// Now that we have all the required data, set the vertex buffers and its attribute pointers.
this->setupMesh();
}
// Render the mesh
void Draw(Shader shader)
{
// Bind appropriate textures
GLuint diffuseNr = 1;
GLuint specularNr = 1;
GLuint reflectionNr = 1;
for (GLuint i = 0; i < this->textures.size(); i++)
{
glActiveTexture(GL_TEXTURE0 + i); // Active proper texture unit before binding
// Retrieve texture number (the N in diffuse_textureN)
stringstream ss;
string number;
string name = this->textures[i].type;
if (name == "texture_diffuse")
ss << diffuseNr++; // Transfer GLuint to stream
else if (name == "texture_specular")
ss << specularNr++; // Transfer GLuint to stream
else if (name == "texture_reflection") // We'll now also need to add the code to set and bind to reflection textures
ss << reflectionNr++;
number = ss.str();
// Now set the sampler to the correct texture unit
glUniform1i(glGetUniformLocation(shader.program, (name + number).c_str()), i);
// And finally bind the texture
glBindTexture(GL_TEXTURE_2D, this->textures[i].id);
}
glActiveTexture(GL_TEXTURE0); // Always good practice to set everything back to defaults once configured.
// Also set each mesh's shininess property to a default value (if you want you could extend this to another mesh property and possibly change this value)
//glUniform1f(glGetUniformLocation(shader.Program, "material.shininess"), 16.0f);
// Draw mesh
glBindVertexArray(this->VAO);
glDrawElements(GL_TRIANGLES, this->indices.size(), GL_UNSIGNED_INT, 0);
glBindVertexArray(0);
}
private:
/* Render data */
GLuint VAO, VBO, EBO;
/* Functions */
// Initializes all the buffer objects/arrays
void setupMesh()
{
// Create buffers/arrays
glGenVertexArrays(1, &this->VAO);
glGenBuffers(1, &this->VBO);
glGenBuffers(1, &this->EBO);
glBindVertexArray(this->VAO);
// Load data into vertex buffers
glBindBuffer(GL_ARRAY_BUFFER, this->VBO);
// A great thing about structs is that their memory layout is sequential for all its items.
// The effect is that we can simply pass a pointer to the struct and it translates perfectly to a glm::vec3/2 array which
// again translates to 3/2 floats which translates to a byte array.
glBufferData(GL_ARRAY_BUFFER, this->vertices.size() * sizeof(Vertex), &this->vertices[0], GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->EBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, this->indices.size() * sizeof(GLuint), &this->indices[0], GL_STATIC_DRAW);
// Set the vertex attribute pointers
// Vertex Positions
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (GLvoid*)0);
// Vertex Normals
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (GLvoid*)offsetof(Vertex, Normal));
// Vertex Texture Coords
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), (GLvoid*)offsetof(Vertex, TexCoords));
glBindVertexArray(0);
}
};
Model.h
#pragma once
// Std. Includes
#include <string>
#include <fstream>
#include <sstream>
#include <iostream>
#include <map>
#include <vector>
using namespace std;
// GL Includes
#include <GL/glew.h> // Contains all the necessery OpenGL includes
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <SOIL.h>
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>
#include "Mesh.h"
GLint TextureFromFile(const char* path, string directory);
class Model
{
public:
/* Functions */
// Constructor, expects a filepath to a 3D model.
Model(GLchar* path)
{
this->loadModel(path);
}
// Draws the model, and thus all its meshes
void Draw(Shader shader)
{
for (GLuint i = 0; i < this->meshes.size(); i++)
this->meshes[i].Draw(shader);
}
private:
/* Model Data */
vector<Mesh> meshes;
string directory;
vector<Texture> textures_loaded; // Stores all the textures loaded so far, optimization to make sure textures aren't loaded more than once.
/* Functions */
// Loads a model with supported ASSIMP extensions from file and stores the resulting meshes in the meshes vector.
void loadModel(string path)
{
// Read file via ASSIMP
Assimp::Importer importer;
const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate | aiProcess_FlipUVs);
// Check for errors
if (!scene || scene->mFlags == AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode) // if is Not Zero
{
cout << "ERROR::ASSIMP:: " << importer.GetErrorString() << endl;
return;
}
// Retrieve the directory path of the filepath
this->directory = path.substr(0, path.find_last_of('/'));
// Process ASSIMP's root node recursively
this->processNode(scene->mRootNode, scene);
}
// Processes a node in a recursive fashion. Processes each individual mesh located at the node and repeats this process on its children nodes (if any).
void processNode(aiNode* node, const aiScene* scene)
{
// Process each mesh located at the current node
for (GLuint i = 0; i < node->mNumMeshes; i++)
{
// The node object only contains indices to index the actual objects in the scene.
// The scene contains all the data, node is just to keep stuff organized.
aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];
this->meshes.push_back(this->processMesh(mesh, scene));
}
// After we've processed all of the meshes (if any) we then recursively process each of the children nodes
for (GLuint i = 0; i < node->mNumChildren; i++)
{
// Child nodes are actually stored in the node, not in the scene (which makes sense since nodes only contain
// links and indices, nothing more, so why store that in the scene)
this->processNode(node->mChildren[i], scene);
}
}
Mesh processMesh(aiMesh* mesh, const aiScene* scene)
{
// Data to fill
vector<Vertex> vertices;
vector<GLuint> indices;
vector<Texture> textures;
// Walk through each of the mesh's vertices
for (GLuint i = 0; i < mesh->mNumVertices; i++)
{
Vertex vertex;
glm::vec3 vector; // We declare a placeholder vector since assimp uses its own vector class that doesn't directly convert to glm's vec3 class so we transfer the data to this placeholder glm::vec3 first.
// Positions
vector.x = mesh->mVertices[i].x;
vector.y = mesh->mVertices[i].y;
vector.z = mesh->mVertices[i].z;
vertex.Position = vector;
// Normals
vector.x = mesh->mNormals[i].x;
vector.y = mesh->mNormals[i].y;
vector.z = mesh->mNormals[i].z;
vertex.Normal = vector;
// Texture Coordinates
if (mesh->mTextureCoords[0]) // Does the mesh contain texture coordinates?
{
glm::vec2 vec;
// A vertex can contain up to 8 different texture coordinates. We thus make the assumption that we won't
// use models where a vertex can have multiple texture coordinates so we always take the first set (0).
vec.x = mesh->mTextureCoords[0][i].x;
vec.y = mesh->mTextureCoords[0][i].y;
vertex.TexCoords = vec;
}
else
vertex.TexCoords = glm::vec2(0.0f, 0.0f);
vertices.push_back(vertex);
}
// Now wak through each of the mesh's faces (a face is a mesh its triangle) and retrieve the corresponding vertex indices.
for (GLuint i = 0; i < mesh->mNumFaces; i++)
{
aiFace face = mesh->mFaces[i];
// Retrieve all indices of the face and store them in the indices vector
for (GLuint j = 0; j < face.mNumIndices; j++)
indices.push_back(face.mIndices[j]);
}
// Process materials
if (mesh->mMaterialIndex >= 0)
{
aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];
// We assume a convention for sampler names in the shaders. Each diffuse texture should be named
// as 'texture_diffuseN' where N is a sequential number ranging from 1 to MAX_SAMPLER_NUMBER.
// Same applies to other texture as the following list summarizes:
// Diffuse: texture_diffuseN
// Specular: texture_specularN
// Normal: texture_normalN
// 1. Diffuse maps
vector<Texture> diffuseMaps = this->loadMaterialTextures(material, aiTextureType_DIFFUSE, "texture_diffuse");
textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end());
// 2. Specular maps
vector<Texture> specularMaps = this->loadMaterialTextures(material, aiTextureType_SPECULAR, "texture_specular");
textures.insert(textures.end(), specularMaps.begin(), specularMaps.end());
// 3. Reflection maps (Note that ASSIMP doesn't load reflection maps properly from wavefront objects, so we'll cheat a little by defining the reflection maps as ambient maps in the .obj file, which ASSIMP is able to load)
vector<Texture> reflectionMaps = this->loadMaterialTextures(material, aiTextureType_AMBIENT, "texture_reflection");
textures.insert(textures.end(), reflectionMaps.begin(), reflectionMaps.end());
}
// Return a mesh object created from the extracted mesh data
return Mesh(vertices, indices, textures);
}
// Checks all material textures of a given type and loads the textures if they're not loaded yet.
// The required info is returned as a Texture struct.
vector<Texture> loadMaterialTextures(aiMaterial* mat, aiTextureType type, string typeName)
{
vector<Texture> textures;
for (GLuint i = 0; i < mat->GetTextureCount(type); i++)
{
aiString str;
mat->GetTexture(type, i, &str);
// Check if texture was loaded before and if so, continue to next iteration: skip loading a new texture
GLboolean skip = false;
for (GLuint j = 0; j < textures_loaded.size(); j++)
{
if (textures_loaded[j].path == str)
{
textures.push_back(textures_loaded[j]);
skip = true; // A texture with the same filepath has already been loaded, continue to next one. (optimization)
break;
}
}
if (!skip)
{ // If texture hasn't been loaded already, load it
Texture texture;
texture.id = TextureFromFile(str.C_Str(), this->directory);
texture.type = typeName;
texture.path = str;
textures.push_back(texture);
this->textures_loaded.push_back(texture); // Store it as texture loaded for entire model, to ensure we won't unnecesery load duplicate textures.
}
}
return textures;
}
};
GLint TextureFromFile(const char* path, string directory)
{
//Generate texture ID and load texture data
string filename = string(path);
filename = directory + '/' + filename;
GLuint textureID;
glGenTextures(1, &textureID);
int width, height;
unsigned char* image = SOIL_load_image(filename.c_str(), &width, &height, 0, SOIL_LOAD_RGB);
// Assign texture to ID
glBindTexture(GL_TEXTURE_2D, textureID);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
glGenerateMipmap(GL_TEXTURE_2D);
// Parameters
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glBindTexture(GL_TEXTURE_2D, 0);
SOIL_free_image_data(image);
return textureID;
}
截图
答案 0 :(得分:1)
我知道这是旧的,但由于我遇到同样的问题,我认为这也可以帮助其他人:
在我的情况下,我的纹理坐标不正确,问题在于行
vertices.push_back(mesh->mTextureCoords[0][i].x);
vertices.push_back(mesh->mTextureCoords[0][i].y);
在这种情况下,我们遍历aiScene的所有顶点。 在我的情况下,这导致你的错误,而不是所有的面孔都显示出来。
通过面添加顶点,为我解决了这个问题:
const aiScene *tree = _importer.ReadFile(path, aiProcess_CalcTangentSpace | aiProcess_Triangulate | aiProcess_JoinIdenticalVertices | aiProcess_SortByPType);
// iterate over all meshes in this scene
for (unsigned int m = 0; m < tree->mNumMeshes; ++m) {
const aiMesh *mesh = tree->mMeshes[m];
// iterate over all faces in this mesh
for (unsigned int j = 0; j < mesh->mNumFaces; ++j) {
auto const &face = mesh->mFaces[j];
//normally you want just triangles, so iterate over all 3 vertices of the face:
for (int k = 0; k < 3; ++k) {
// Now do the magic with 'face.mIndices[k]'
auto const &vertex = mesh->mVertices[face.mIndices[k]];
vertices.push_back(vertex.x);
vertices.push_back(vertex.y);
vertices.push_back(vertex.z);
// Same for the normals.
auto const &normal = mesh->mNormals[face.mIndices[k]];
vertices.push_back(normal.x);
vertices.push_back(normal.y);
vertices.push_back(normal.z);
// Color of material
// ...
// And FINALLY: The UV coordinates!
if(mesh->HasTextureCoords(0)) {
// The following line fixed the issue for me now:
auto const &uv = mesh->mTextureCoords[0][face.mIndices[k]];
vertices.push_back(uv.x);
vertices.push_back(uv.y);
}
}
}
}
答案 1 :(得分:0)
我在这里可以看到
glDrawElements(GL_TRIANGLES, this->indices.size(), GL_UNSIGNED_INT, 0);
将所有顶点绘制为三角形。这就是你如何从assimp加载索引
for (GLuint i = 0; i < mesh->mNumFaces; i++)
{
aiFace face = mesh->mFaces[i];
for (GLuint j = 0; j < face.mNumIndices; j++)
indices.push_back(face.mIndices[j]);
}
这里有一个问题 - 面部没有精确的3个顶点(即使你在加载时使用aiProcess_Triangulate
),它使用GL_TRIANGLES
来绘制图形。对于aiProcess_Triangulate
,将有面具有&lt; = 3个顶点(例如三角形和直线)。您可以忽略不是三角形面,这应该修复绘图。这是一个固定的indeces填充周期:
for (GLuint i = 0; i < mesh->mNumFaces; i++)
{
aiFace face = mesh->mFaces[i];
if (face.mNumIndices < 3) {
continue;
}
assert(face.mNumIndices == 3);
for (GLuint j = 0; j < face.mNumIndices; j++)
indices.push_back(face.mIndices[j]);
}