我的RGB图像已经重新缩放,因此较长的边缘变为256像素,现在我想用该图像的中间RGB值填充边框,因此生成的图像总是256x256像素。
此代码已经有效,但我确信可以采用更简单更优雅的方式来实现此目的:
img = loadAndFitImage(filePath, maxSideLength=256, upscale=True)
shp = img.shape
#the shp in this case is typically (256,123,3) or (99,256,3)
leftPad = (256 - shp[0]) / 2
rightPad = 256 - shp[0] - leftPad
topPad = (256 - shp[1]) / 2
bottomPad = 256 - shp[1] - topPad
# this part looks like there might be a way to do it with one median call instead of 3:
median = (np.median(img[:, :, 0]),np.median(img[:, :, 1]),np.median(img[:, :, 2]))
img = np.lib.pad(img, ((leftPad,rightPad),(topPad,bottomPad),(0,0)),
'constant',constant_values=0)
if leftPad > 0:
img[:leftPad,:,0].fill(median[0])
img[:leftPad,:,1].fill(median[1])
img[:leftPad,:,2].fill(median[2])
if rightPad > 0:
img[-rightPad:,:,0].fill(median[0])
img[-rightPad:,:,1].fill(median[1])
img[-rightPad:,:,2].fill(median[2])
if topPad > 0:
img[:,:topPad,0].fill(median[0])
img[:,:topPad,1].fill(median[1])
img[:,:topPad,2].fill(median[2])
if bottomPad > 0:
img[:,-bottomPad:,0].fill(median[0])
img[:,-bottomPad:,1].fill(median[1])
img[:,-bottomPad:,2].fill(median[2])
编辑(附加信息):
答案 0 :(得分:6)
您可以通过以下方式轻松完成:
import numpy as np
a = np.asarray([[1,2,3,4,5,6],
[8,4,5,6,7,7],
[1,2,3,4,5,6],
[1,2,3,4,5,6],
[1,2,3,4,5,6],
[1,2,3,4,5,6]])
b = a * 3
c = a * 4
d = (a,b,c)
im = np.asarray([np.pad(x, (2,), 'constant', constant_values=(np.median(x) ,)) for x in d])
print im
输出:
[[[ 4 4 4 4 4 4 4 4 4 4]
[ 4 4 4 4 4 4 4 4 4 4]
[ 4 4 1 2 3 4 5 6 4 4]
[ 4 4 8 4 5 6 7 7 4 4]
[ 4 4 1 2 3 4 5 6 4 4]
[ 4 4 1 2 3 4 5 6 4 4]
[ 4 4 1 2 3 4 5 6 4 4]
[ 4 4 1 2 3 4 5 6 4 4]
[ 4 4 4 4 4 4 4 4 4 4]
[ 4 4 4 4 4 4 4 4 4 4]]
[[12 12 12 12 12 12 12 12 12 12]
[12 12 12 12 12 12 12 12 12 12]
[12 12 3 6 9 12 15 18 12 12]
[12 12 24 12 15 18 21 21 12 12]
[12 12 3 6 9 12 15 18 12 12]
[12 12 3 6 9 12 15 18 12 12]
[12 12 3 6 9 12 15 18 12 12]
[12 12 3 6 9 12 15 18 12 12]
[12 12 12 12 12 12 12 12 12 12]
[12 12 12 12 12 12 12 12 12 12]]
[[16 16 16 16 16 16 16 16 16 16]
[16 16 16 16 16 16 16 16 16 16]
[16 16 4 8 12 16 20 24 16 16]
[16 16 32 16 20 24 28 28 16 16]
[16 16 4 8 12 16 20 24 16 16]
[16 16 4 8 12 16 20 24 16 16]
[16 16 4 8 12 16 20 24 16 16]
[16 16 4 8 12 16 20 24 16 16]
[16 16 16 16 16 16 16 16 16 16]
[16 16 16 16 16 16 16 16 16 16]]]
或者在你的特殊情况下:
import numpy as np
from PIL import Image
filePath = '/home/george/Desktop/img.jpg'
Img = Image.open(filePath)
img = np.asarray(Img, np.int)
shp = np.shape(img)
img = img.transpose(2,0,1).reshape(3,215,215)
leftPad = round(float((255 - shp[0])) / 2)
rightPad = round(float(255 - shp[0]) - leftPad)
topPad = round(float((255 - shp[1])) / 2)
bottomPad = round(float(255 - shp[1]) - topPad)
pads = ((leftPad,rightPad),(topPad,bottomPad))
img_arr = np.ndarray((3,255,255),np.int)
for i,x in enumerate(img):
cons = np.int(np.median(x))
x_p = np.pad(x,pads,
'constant',
constant_values=cons)
img_arr[i,:,:] = x_p
im_shp = np.shape(img_arr)
ii = np.uint8(img_arr).transpose(1,2,0)
im = Image.fromarray(np.array( (ii) ))
im.show()
im.save((filePath), "JPEG")
<强>输出:强>
答案 1 :(得分:3)
我也在努力解决这个问题,并找到了一个优雅的答案:
color = np.median(img, axis=(0,1))
img = np.stack([np.pad(img[:,:,c], pad, mode='constant', constant_values=color[c]) for c in range(3)], axis=2)
答案 2 :(得分:2)
可以使用median = np.median(img.reshape(-1, 3), axis=0)
或类似内容计算中位数,请参阅this answer。
填充可以通过每边一行来完成,类似于img[:leftPad,:,:] = median
。看看broadcasting rules。