在爪哇实施Riemann Siegel公式,对改善剩余期限感到好奇

时间:2015-07-21 23:10:18

标签: java complex-numbers approximation

我写了一个计算Riemann-Siegel Z(t)函数的基本程序。我很好奇是否有更好的方法来估算剩余期限。我现在使用的方法是使用Haselgrove的可怕表格近似值。

Further information about the Riemann Siegel formula。这可能有点高级,但有关详细信息,请参见this thesis。另外,在Edwards book

我知道我的for循环不是最佳的,我只是将它用于测试目的。我可以使用不同的方法来近似零。

这是我写的实现:

import java.util.*;

public class Main {
  public static void main(String[] args) {
    double s[] = new double[10];
    s[0] = 2;

    for (double i = 0; i < 500; i += 0.0001) {
      if (RiemennZ(i, 4) < 0.0001 && RiemennZ(i, 4) > -1*0.0001)
        System.out.println("Found a zero at " + i + ", the value of Zeta(s) is "
                           + RiemennZ(i, 4));
    }

    //System.out.println(4);
    //System.out.println("Value of the Zeta Function " + Arrays.toString(Riemann.zeta(s)));
    System.out.println("The function you wrote is- " + RiemennZ(16, 4));
    System.out.println(fAbs(1.3) -1.0);
    //System.out.println(theta(25));
  }

  // Riemann-Siegel theta function using the approximation by the Stirling series
  public static double theta (double t) {
    return (t/2.0 * Math.log(t/(2.0*Math.PI)) - t/2.0 - Math.PI/8.0
            + 1.0/(48.0*Math.pow(t, 1)) + 7.0/(5760*Math.pow(t, 3)));
  }

  // Computes Math.Floor of the absolute value term passed in as t.
  public static double fAbs(double t) {
    return Math.floor(Math.abs(t));
  }

  // Riemann-Siegel Z(t) function implemented per the Riemenn Siegel formula.
  // See http://mathworld.wolfram.com/Riemann-SiegelFormula.html for details
  public static double RiemennZ(double t, int r) {
    double twopi = Math.PI * 2.0; 
    double val = Math.sqrt(t/twopi);
    double n = fAbs(val);
    double sum = 0.0;

    for (int i = 1; i <= n; i++) {
      sum += (Math.cos(theta(t) - t * Math.log(i))) / Math.sqrt(i);
    }

    sum = 2.0 * sum;

    // Add the remainder terms
    double remainder;
    double frac = val - n; 
    int k = 0;
    double R = 0.0;

    while (k <= r) {
      R = R + C(k, 2.0*frac-1.0) * Math.pow(t / twopi, ((double) k) * -0.5);
      k++;
    }

    remainder = Math.pow(-1, (int)n-1) * Math.pow(t / twopi, -0.25) * R;
    return sum + remainder;
  }

  // C terms for the Riemann-Siegel formula
  public static double C (int n, double z) {
    if (n==0) 
      return(.38268343236508977173 * Math.pow(z, 0.0) 
      +.43724046807752044936 * Math.pow(z, 2.0) 
      +.13237657548034352332 * Math.pow(z, 4.0) 
      -.01360502604767418865 * Math.pow(z, 6.0) 
      -.01356762197010358089 * Math.pow(z, 8.0) 
      -.00162372532314446528 * Math.pow(z,10.0) 
      +.00029705353733379691 * Math.pow(z,12.0) 
      +.00007943300879521470 * Math.pow(z,14.0) 
      +.00000046556124614505 * Math.pow(z,16.0) 
      -.00000143272516309551 * Math.pow(z,18.0) 
      -.00000010354847112313 * Math.pow(z,20.0) 
      +.00000001235792708386 * Math.pow(z,22.0) 
      +.00000000178810838580 * Math.pow(z,24.0) 
      -.00000000003391414390 * Math.pow(z,26.0) 
      -.00000000001632663390 * Math.pow(z,28.0) 
      -.00000000000037851093 * Math.pow(z,30.0) 
      +.00000000000009327423 * Math.pow(z,32.0) 
      +.00000000000000522184 * Math.pow(z,34.0) 
      -.00000000000000033507 * Math.pow(z,36.0) 
      -.00000000000000003412 * Math.pow(z,38.0)
      +.00000000000000000058 * Math.pow(z,40.0) 
      +.00000000000000000015 * Math.pow(z,42.0)); 
    else if (n==1) 
      return(-.02682510262837534703 * Math.pow(z, 1.0) 
      +.01378477342635185305 * Math.pow(z, 3.0) 
      +.03849125048223508223 * Math.pow(z, 5.0) 
      +.00987106629906207647 * Math.pow(z, 7.0) 
      -.00331075976085840433 * Math.pow(z, 9.0) 
      -.00146478085779541508 * Math.pow(z,11.0) 
      -.00001320794062487696 * Math.pow(z,13.0) 
      +.00005922748701847141 * Math.pow(z,15.0) 
      +.00000598024258537345 * Math.pow(z,17.0) 
      -.00000096413224561698 * Math.pow(z,19.0) 
      -.00000018334733722714 * Math.pow(z,21.0) 
      +.00000000446708756272 * Math.pow(z,23.0) 
      +.00000000270963508218 * Math.pow(z,25.0) 
      +.00000000007785288654 * Math.pow(z,27.0)
      -.00000000002343762601 * Math.pow(z,29.0) 
      -.00000000000158301728 * Math.pow(z,31.0) 
      +.00000000000012119942 * Math.pow(z,33.0) 
      +.00000000000001458378 * Math.pow(z,35.0) 
      -.00000000000000028786 * Math.pow(z,37.0) 
      -.00000000000000008663 * Math.pow(z,39.0) 
      -.00000000000000000084 * Math.pow(z,41.0) 
      +.00000000000000000036 * Math.pow(z,43.0) 
      +.00000000000000000001 * Math.pow(z,45.0)); 
    else if (n==2) 
      return(+.00518854283029316849 * Math.pow(z, 0.0) 
      +.00030946583880634746 * Math.pow(z, 2.0) 
      -.01133594107822937338 * Math.pow(z, 4.0) 
      +.00223304574195814477 * Math.pow(z, 6.0) 
      +.00519663740886233021 * Math.pow(z, 8.0) 
      +.00034399144076208337 * Math.pow(z,10.0) 
      -.00059106484274705828 * Math.pow(z,12.0) 
      -.00010229972547935857 * Math.pow(z,14.0) 
      +.00002088839221699276 * Math.pow(z,16.0) 
      +.00000592766549309654 * Math.pow(z,18.0) 
      -.00000016423838362436 * Math.pow(z,20.0) 
      -.00000015161199700941 * Math.pow(z,22.0) 
      -.00000000590780369821 * Math.pow(z,24.0) 
      +.00000000209115148595 * Math.pow(z,26.0) 
      +.00000000017815649583 * Math.pow(z,28.0) 
      -.00000000001616407246 * Math.pow(z,30.0) 
      -.00000000000238069625 * Math.pow(z,32.0) 
      +.00000000000005398265 * Math.pow(z,34.0) 
      +.00000000000001975014 * Math.pow(z,36.0) 
      +.00000000000000023333 * Math.pow(z,38.0) 
      -.00000000000000011188 * Math.pow(z,40.0) 
      -.00000000000000000416 * Math.pow(z,42.0) 
      +.00000000000000000044 * Math.pow(z,44.0) 
      +.00000000000000000003 * Math.pow(z,46.0)); 
    else if (n==3) 
      return(-.00133971609071945690 * Math.pow(z, 1.0) 
      +.00374421513637939370 * Math.pow(z, 3.0) 
      -.00133031789193214681 * Math.pow(z, 5.0) 
      -.00226546607654717871 * Math.pow(z, 7.0) 
      +.00095484999985067304 * Math.pow(z, 9.0) 
      +.00060100384589636039 * Math.pow(z,11.0) 
      -.00010128858286776622 * Math.pow(z,13.0) 
      -.00006865733449299826 * Math.pow(z,15.0) 
      +.00000059853667915386 * Math.pow(z,17.0) 
      +.00000333165985123995 * Math.pow(z,19.0)
      +.00000021919289102435 * Math.pow(z,21.0) 
      -.00000007890884245681 * Math.pow(z,23.0) 
      -.00000000941468508130 * Math.pow(z,25.0) 
      +.00000000095701162109 * Math.pow(z,27.0) 
      +.00000000018763137453 * Math.pow(z,29.0) 
      -.00000000000443783768 * Math.pow(z,31.0) 
      -.00000000000224267385 * Math.pow(z,33.0) 
      -.00000000000003627687 * Math.pow(z,35.0) 
      +.00000000000001763981 * Math.pow(z,37.0) 
      +.00000000000000079608 * Math.pow(z,39.0) 
      -.00000000000000009420 * Math.pow(z,41.0) 
      -.00000000000000000713 * Math.pow(z,43.0) 
      +.00000000000000000033 * Math.pow(z,45.0) 
      +.00000000000000000004 * Math.pow(z,47.0)); 
    else 
      return(+.00046483389361763382 * Math.pow(z, 0.0) 
      -.00100566073653404708 * Math.pow(z, 2.0) 
      +.00024044856573725793 * Math.pow(z, 4.0) 
      +.00102830861497023219 * Math.pow(z, 6.0) 
      -.00076578610717556442 * Math.pow(z, 8.0) 
      -.00020365286803084818 * Math.pow(z,10.0) 
      +.00023212290491068728 * Math.pow(z,12.0) 
      +.00003260214424386520 * Math.pow(z,14.0) 
      -.00002557906251794953 * Math.pow(z,16.0) 
      -.00000410746443891574 * Math.pow(z,18.0) 
      +.00000117811136403713 * Math.pow(z,20.0) 
      +.00000024456561422485 * Math.pow(z,22.0) 
      -.00000002391582476734 * Math.pow(z,24.0) 
      -.00000000750521420704 * Math.pow(z,26.0) 
      +.00000000013312279416 * Math.pow(z,28.0) 
      +.00000000013440626754 * Math.pow(z,30.0) 
      +.00000000000351377004 * Math.pow(z,32.0) 
      -.00000000000151915445 * Math.pow(z,34.0) 
      -.00000000000008915418 * Math.pow(z,36.0) 
      +.00000000000001119589 * Math.pow(z,38.0) 
      +.00000000000000105160 * Math.pow(z,40.0) 
      -.00000000000000005179 * Math.pow(z,42.0) 
      -.00000000000000000807 * Math.pow(z,44.0) 
      +.00000000000000000011 * Math.pow(z,46.0) 
      +.00000000000000000004 * Math.pow(z,48.0));
  } 
}

余下的术语定义为:(cos[2pi(p^2-p-1/(16))])/(cos(2pip))

在Wolfram Alpha中做这个函数的多个派生是一个完整的混乱。有没有人曾经遇到过这类问题?

为了使用多个余数项,我需要为:(cos[2pi(p^2-p-1/(16))])/(cos(2pip))

计算多个导数

有什么方法可以用Java实现吗?

一种方法是使用有限差分方法。这不是一个很好的解决方案,但这是我想到的第一件事。

// Derivation of the first C term using first order central difference
public static double firstDerivative(double p) {

    double epsilon = 0.0000000001;
    double d1, d2;
    double dx = 0.00001;
    double diff = 1.0;

    d1 = (function(p + dx) - function(p - dx)) / (2 * dx);

    while (diff > epsilon) {
        dx /= 2;
        d2 = (function(p + dx) - function(p - dx)) / (2 * dx);
        diff = Math.abs(d2 - d1);
        d1 = d2;
    }

    return d1;     
}

// Derivation of the second C term using second order central difference
public static double secondDerivative(double p) {

    double epsilon = 0.0000000001;
    double d1, d2;
    double dx = 0.00001;
    double diff = 1.0;

    d1 = (function(p + dx) - 2.0 * function(p) + function(p - dx)) / Math.pow(dx, 2);

    while (diff > epsilon) {
        dx /= 2;
        d2 = (function(p + dx) - 2.0 * function(p) + function(p - dx)) / Math.pow(dx, 2);
        diff = Math.abs(d2 - d1);
        d1 = d2;
    }

    return d1;     
}

1 个答案:

答案 0 :(得分:1)

您需要多少衍生品?

你想预先计算它们还是做它们&#34;在飞行中&#34;?

您可以轻松地使用GeoGebra(在Java中)预先计算它们,例如

CopyFreeObject[Derivative[cos(2π (x² - x - 1 / 16)) / cos(2π x), 3]]

如果你想深入研究一下,内部GeoGebra可以使用Giac CAS引擎(用C ++编写)来做衍生工具,也可以直接计算它们,参见ExpressionNode.derivative()