有一个像这样的数组:
[1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1]
Python中最快的方法是在列表中组织非零元素,其中每个元素包含连续非零值块的索引?
这里的结果将是一个包含许多数组的列表:
([0, 1, 2, 3], [9, 10, 11], [14, 15], [20, 21])
答案 0 :(得分:8)
>>> L = [1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1]
>>> import itertools
>>> import operator
>>> [[i for i,value in it] for key,it in itertools.groupby(enumerate(L), key=operator.itemgetter(1)) if key != 0]
[[0, 1, 2, 3], [9, 10, 11], [14, 15], [20, 21]]
答案 1 :(得分:1)
查看scipy.ndimage.measurements.label
:
while (i < n){
int a = LOAD_GLOBAL_I1(input, i);
int b = LOAD_GLOBAL_I1(input, i + group_size);
int s = LOAD_LOCAL_I1(shared, local_id);
STORE_LOCAL_I1(shared, local_id, (a + b + s));
i += local_stride;
}
#define ACCUM_LOCAL_I1(s, i, j) \
{ \
int x = ((__local int*)(s))[(size_t)(i)]; \
int y = ((__local int*)(s))[(size_t)(j)]; \
((__local int*)(s))[(size_t)(i)] = (x + y); \
}
包含您要求的内容。请注意,根据您的最终目标,import numpy as np
from scipy.ndimage.measurements import label
x = np.asarray([1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1])
labelled, numfeats = label(x)
indices = [np.nonzero(labelled == k) for k in np.unique(labelled)[1:]]
也可能会为您提供有用的(额外)信息。
答案 2 :(得分:1)
Finding the consecutive zeros in a numpy array对我的回答进行了微不足道的更改,给出了函数find_runs
:
def find_runs(value, a):
# Create an array that is 1 where a is `value`, and pad each end with an extra 0.
isvalue = np.concatenate(([0], np.equal(a, value).view(np.int8), [0]))
absdiff = np.abs(np.diff(isvalue))
# Runs start and end where absdiff is 1.
ranges = np.where(absdiff == 1)[0].reshape(-1, 2)
return ranges
例如,
In [43]: x
Out[43]: array([1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1])
In [44]: find_runs(1, x)
Out[44]:
array([[ 0, 4],
[ 9, 12],
[14, 16],
[20, 22]])
In [45]: [range(*run) for run in find_runs(1, x)]
Out[45]: [[0, 1, 2, 3], [9, 10, 11], [14, 15], [20, 21]]
如果示例中的值1
不具代表性,并且您确实希望运行任何非零值(如问题文本所示),则可以将np.equal(a, value)
更改为{ {1}}并适当地更改参数和注释。 E.g。
(a != 0)
例如,
def find_nonzero_runs(a):
# Create an array that is 1 where a is nonzero, and pad each end with an extra 0.
isnonzero = np.concatenate(([0], (np.asarray(a) != 0).view(np.int8), [0]))
absdiff = np.abs(np.diff(isnonzero))
# Runs start and end where absdiff is 1.
ranges = np.where(absdiff == 1)[0].reshape(-1, 2)
return ranges
答案 3 :(得分:1)
一旦您知道非零的间隔,就可以使用np.split
。长度和A
中的相应索引。假设A
作为输入数组,实现看起来像这样 -
# Append A on either sides with zeros
A_ext = np.diff(np.hstack(([0],A,[0])))
# Find interval of non-zeros lengths
interval_lens = np.where(A_ext==-1)[0] - np.where(A_ext==1)[0]
# Indices of non-zeros places in A
idx = np.arange(A.size)[A!=0]
# Finally split indices based on the interval lengths
out = np.split(idx,interval_lens.cumsum())[:-1]
示例输入,输出 -
In [53]: A
Out[53]: array([1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1])
In [54]: out
Out[54]: [array([0, 1, 2, 3]), array([ 9, 10, 11]), array([14, 15]), array([20, 21])]