我的数据集表示许多技术报告的作者列表。每份报告都可以由一个或多个人撰写:
a = [
['John', 'Mark', 'Jennifer'],
['John'],
['Joe', 'Mark'],
['John', 'Anna', 'Jennifer'],
['Jennifer', 'John', 'Mark']
]
我发现最常见的一对,即过去合作最多的人:
['John', 'Jennifer'] - 3 times
['John', 'Mark'] - 2 times
['Mark', 'Jennifer'] - 2 times
etc...
如何在Python中执行此操作?
答案 0 :(得分:5)
collections.Counter
使用itertools.combinations
dict:
from collections import Counter
from itertools import combinations
d = Counter()
for sub in a:
if len(a) < 2:
continue
sub.sort()
for comb in combinations(sub,2):
d[comb] += 1
print(d.most_common())
[(('Jennifer', 'John'), 3), (('John', 'Mark'), 2), (('Jennifer', 'Mark'), 2), (('Anna', 'John'), 1), (('Joe', 'Mark'), 1), (('Anna', 'Jennifer'), 1)]
most_common()
会按照最常见的顺序返回配对,您希望第一个n
最常见的传递n
d.most_common(n)
答案 1 :(得分:2)
import collections
import itertools
a = [
['John', 'Mark', 'Jennifer'],
['John'],
['Joe', 'Mark'],
['John', 'Anna', 'Jennifer'],
['Jennifer', 'John', 'Mark']
]
counts = collections.defaultdict(int)
for collab in a:
collab.sort()
for pair in itertools.combinations(collab, 2):
counts[pair] += 1
for pair, freq in counts.items():
print(pair, freq)
输出:
('John', 'Mark') 2
('Jennifer', 'Mark') 2
('Anna', 'John') 1
('Jennifer', 'John') 3
('Anna', 'Jennifer') 1
('Joe', 'Mark') 1
答案 2 :(得分:1)
您可以使用集合理解来创建一组所有数字,然后使用列表推导来计算子列表中对名称的出现次数:
>>> from itertools import combinations as comb
>>> all_nam={j for i in a for j in i}
>>> [[(i,j),sum({i,j}.issubset(t) for t in a)] for i,j in comb(all_nam,2)]
[[('Jennifer', 'John'), 3],
[('Jennifer', 'Joe'), 0],
[('Jennifer', 'Anna'), 1],
[('Jennifer', 'Mark'), 2],
[('John', 'Joe'), 0],
[('John', 'Anna'), 1],
[('John', 'Mark'), 2],
[('Joe', 'Anna'), 0],
[('Joe', 'Mark'), 1],
[('Anna', 'Mark'), 0]]