我有两张桌子:
我尝试从名称表加入时间戳和id。我通过获取与给定名称关联的所有时间戳和ID并从数据表中检索这些条目的数据来实现此目的。
在CQL中执行它真的很快。我预计Spark Cassandra会同样快速,但它似乎正在进行全表扫描。可能是由于不知道哪个字段是分区/主键。虽然我似乎无法找到一种方法来告诉它映射。
如何使此连接尽可能高效?这是我的代码示例:
private static void notSoEfficientJoin() {
SparkConf conf = new SparkConf().setAppName("Simple Application")
.setMaster("local[*]")
.set("spark.cassandra.connection.host", "localhost")
.set("spark.driver.allowMultipleContexts", "true");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaPairRDD<DataKey, NameRow> nameIndexRDD = javaFunctions(sc).cassandraTable("my_keyspace", "name", mapRowTo(NameRow.class)).where("name = 'John'")
.keyBy(new Function<NameRow, DataKey>() {
@Override
public DataKey call(NameRow v1) throws Exception {
return new DataKey(v1.timestamp, v1.id);
}
});
JavaPairRDD<DataKey, DataRow> dataRDD = javaFunctions(sc).cassandraTable("my_keyspace", "data", mapRowTo(DataRow.class))
.keyBy(new Function<DataRow, DataKey>() {
@Override
public DataKey call(DataRow v1) throws Exception {
return new DataKey(v1.timestamp, v1.id);
}
});
JavaRDD<String> cassandraRowsRDD = nameIndexRDD.join(dataRDD)
.map(new Function<Tuple2<DataKey, Tuple2<NameRow, DataRow>>, String>() {
@Override
public String call(Tuple2<DataKey, Tuple2<NameRow, DataRow>> v1) throws Exception {
NameRow nameRow = v1._2()._1();
DataRow dataRow = v1._2()._2();
return nameRow + " " + dataRow;
}
});
List<String> collect = cassandraRowsRDD.collect();
}
答案 0 :(得分:2)
更有效地加入联接的方法是实际调用joinWithCassandraTable
这可以通过使用另一个javaFunctions
调用包装结果来完成:
private static void moreEfficientJoin() {
SparkConf conf = new SparkConf().setAppName("Simple Application")
.setMaster("local[*]")
.set("spark.cassandra.connection.host", "localhost")
.set("spark.driver.allowMultipleContexts", "true");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<DataKey> nameIndexRDD = sc.parallelize(javaFunctions(sc).cassandraTable("my_keyspace", "name", mapRowTo(DataKey.class))
.where("name = 'John'")
.collect());
JavaRDD<Data> dataRDD = javaFunctions(nameIndexRDD).joinWithCassandraTable("my_keyspace", "data", allColumns, someColumns("timestamp", "id"), mapRowTo(Data.class), mapToRow(DataKey.class))
.map(new Function<Tuple2<DataKey, Data>, Data>() {
@Override
public Data call(Tuple2<DataKey, Data> v1) throws Exception {
return v1._2();
}
});
List<Data> data = dataRDD.collect();
}
重要的是用JavaRDD
包裹javaFunctions
。因此,可以不在collect
sc.parallelize
和nameIndexRDD