我正在使用seaborn distplot(data,fit = stats.gamma)
如何获取返回的拟合参数?
以下是一个例子:
import numpy as np
import pandas as pd
import seaborn as sns
from scipy import stats
df = pd.read_csv ('RequestSize.csv')
import matplotlib.pyplot as plt
reqs = df['12 web pages']
reqs = reqs.dropna()
reqs = reqs[np.logical_and (reqs > np.percentile (reqs, 0), reqs < np.percentile (reqs, 95))]
dist = sns.distplot (reqs, fit=stats.gamma)
答案 0 :(得分:6)
使用您传递给{
"node": true,
"browser": true,
"esnext": true,
"bitwise": true,
"camelcase": true,
"curly": true,
"eqeqeq": true,
"immed": true,
"indent": 2,
"latedef": true,
"noarg": true,
"quotmark": "single",
"undef": true,
"unused": true,
"globals": {
"wrap": true,
"unwrap": true,
"Polymer": true,
"Platform": true,
"page": true,
"app": true
}
}
的对象:
distplot
答案 1 :(得分:2)
我确认以上情况属实 - sns.distplot fit方法等同于scipy.stats中的fit方法,因此您可以从那里获取参数,例如:
from scipy import stats
ax = sns.distplot(e_t_hat, bins=20, kde=False, fit=stats.norm);
plt.title('Distribution of Cointegrating Spread for Brent and Gasoil')
# Get the fitted parameters used by sns
(mu, sigma) = stats.norm.fit(e_t_hat)
print "mu={0}, sigma={1}".format(mu, sigma)
# Legend and labels
plt.legend(["normal dist. fit ($\mu=${0:.2g}, $\sigma=${1:.2f})".format(mu, sigma)])
plt.ylabel('Frequency')
# Cross-check this is indeed the case - should be overlaid over black curve
x_dummy = np.linspace(stats.norm.ppf(0.01), stats.norm.ppf(0.99), 100)
ax.plot(x_dummy, stats.norm.pdf(x_dummy, mu, sigma))
plt.legend(["normal dist. fit ($\mu=${0:.2g}, $\sigma=${1:.2f})".format(mu, sigma),
"cross-check"])