目的:对美国法院对同性婚姻的历史判断进行情绪分析。 #由于某些用户的推文数量非常高,可能会引入偏见。我们怎样才能删除它们? #另外,为什么在usafull和total中的独特推文数量不同?
rm(list=ls())
library(twitteR)
library(wordcloud)
library(tm)
download.file(url="http://curl.haxx.se/ca/cacert.pem", destfile="cacert.pem")
consumer_key <- 'key'
consumer_secret <- 'secret'
access_token <- 'key'
access_secret <- 'secret'
setup_twitter_oauth(consumer_key, consumer_secret, access_token, access_secret)
usa <- searchTwitter("#LoveWins", n=1500 , lang="en")
usa2 <- searchTwitter("#LGBT", n=1500 , lang="en")
usa3 <- searchTwitter("#gay", n=1500 , lang="en")
#get the text
tusa <- sapply(usa, function(x) x$getText())
tusa2 <- sapply(usa2, function(x) x$getText())
tusa3 <- sapply(usa3, function(x) x$getText())
#join texts
total <- c(tusa,tusa2,tusa3)
#remove the duplicated tweets
total <- total[!duplicated(total)]
#no. of unique tweets
uni <- length(total)
# merging three set of tweets horozontally
usafull<-c(usa,usa2,usa3)
#convert the tweets into dafa frame
usafull <- twListToDF(usafull)
usafull <- unique(usafull)
#to know the dates of the tweets (date formatting)
usafull$date <- format(usafull$created, format = "%Y-%m-%d")
table(usafull$date)
#make a table of number of tweets per user in decreasing number of tweets
tdata <- as.data.frame(table(usafull$screenName))
tdata <- tdata[order(tdata$Freq, decreasing = T), ]
names(tdata) <- c("User","Tweets")
head(tdata)
# plot the freq of tweets over time in two hour windows
library(ggplot2)
minutes <-60
ggplot(data = usafull, aes(x=created))+geom_bar(aes(fill=..count..), binwidth =60*minutes)+scale_x_datetime("Date")+ scale_y_continuous("Frequency")
#plot the table above for the top 30 to identify any unusual trends
par(mar=c(5,10,2,2))
with(tdata[rev(1:30), ], barplot(Tweets, names=User, horiz = T, las =1, main="Top 30: Tweets per user", col = 1))
# the twitter users with more than 20 tweets for removing bias
userid <- tdata[(tdata$Tweets>20),]
userid <- userid[,1]
答案 0 :(得分:0)
从您的代码中我了解到您要删除userid
中的推文,其中一种方法就是这样,
usafull_nobias <- subset(usafull, !(screenName %in% userid$User))
至于您在total
和usafull
中获得不同数量的推文的原因,可能是因为在total
中你使用推文发现的文字重复,并在usafull
中使用完整的推文;考虑到这一点,例如转推可能有相同的文字,但可能来自不同的用户,有不同的ID等。
希望它有所帮助。