编辑2 包含更完整的程序
编辑1:包含完整的程序
我试图使用cuBLAS计算向量的L2范数。我的代码如下
void GPU_Print_Matrix(real_t *A, int nrows, int ncols) {
real_t *hostA = (real_t*)malloc(nrows*ncols * sizeof(real_t));
CUDA_SAFE_CALL(cudaMemcpy(hostA, A, nrows*ncols * sizeof(real_t), cudaMemcpyDeviceToHost));
cout << "GPU Matrix of Size: " << nrows << "x" << ncols << endl;
for (int i = 0; i < nrows; ++i) {
for (int j = 0; j < ncols; ++j) {
cout << fixed << setprecision(PRINT_PRECISION) << hostA[j*nrows + i] << " ";
}
cout << endl;
}
free(hostA);
cout << endl;
}
void GPU_Random_Vector(thrust::device_vector <real_t> &vec) {
thrust::counting_iterator<unsigned int> index_sequence_begin(rand());
thrust::transform(index_sequence_begin, index_sequence_begin + vec.size(), vec.begin(), RANDOM(-initRange, initRange));
}
int main(int argc, char *argv[]) {
srand(clock());
cout << "# Running NMT" << endl;
//ParseOpts(argc, argv);
cublasHandle_t handle;
CUBLAS_SAFE_CALL(cublasCreate(&handle));
thrust::device_vector <real_t> x(10);
GPU_Random_Vector(x);
GPU_Print_Matrix(thrust::raw_pointer_cast(&x[0]), 10, 1);
real_t nrm = 0;
CUBLAS_SAFE_CALL(cublasXnrm2(handle, 10, thrust::raw_pointer_cast(&x[0]), 1, &nrm));
cout << "nrm2 = " << nrm << endl;
}
此处,CUBLAS_SAFE_CALL
定义如下
#define CUBLAS_SAFE_CALL(call) \
{ \
const cublasStatus_t stat = call; \
if (stat != CUBLAS_STATUS_SUCCESS) { \
cout << "cuBlas Error: " << __FILE__ << ":" << __LINE__ << endl; \
cout << " Code: " << stat << endl; \
exit(1); \
} \
}
GPU_Random_Vector
和GPU_Print_Matrix
已被确认可以使用。此外,cublasHandle[singleGPU]
在被调用之前已初始化。当我运行程序时,我有以下输出
// GPU_Print_Matrix
GPU Matrix of Size: 10x1
0.0652332678
0.0747700930
0.0274266358
-0.0885794610
-0.0192640368
-0.0942506194
0.0283640027
-0.0411146656
-0.0460337885
-0.0970785618
cuBlas Error: nmt.cu:2252
Code: 14
发生了什么事?是否有任何参考资料如何解释cuBLAS的错误编号?非常感谢。
答案 0 :(得分:2)
CUBLAS错误14是CUBLAS_STATUS_INTERNAL_ERROR
,通常意味着在L2规范调用结束时托管副本的内部设备失败。但是,如果没有关于你的代码正在做什么的一些背景,为什么发生这种情况是不可能的。
如果你发布的代码被组装并充实到一个完整的演示案例中(简单的随机数播种错误正确),就像这样:
#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <cublas_v2.h>
#include <thrust/transform.h>
#include <thrust/device_vector.h>
#include <thrust/device_ptr.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/random.h>
typedef float real_t;
#define CUBLAS_SAFE_CALL(call) \
{ \
const cublasStatus_t stat = call; \
if (stat != CUBLAS_STATUS_SUCCESS) { \
std::cout << "cuBlas Error: " << __FILE__ << ":" << __LINE__ << std::endl; \
std::cout << " Code: " << stat << std::endl; \
exit(1); \
} \
}
#define PRINT_PRECISION (6)
struct RANDOM
{
real_t a, b;
__host__ __device__
RANDOM(real_t _a=0, real_t _b=1) : a(_a), b(_b) {};
__host__ __device__
real_t operator()(const unsigned int n) const
{
thrust::default_random_engine rng;
thrust::uniform_real_distribution<float> dist(a, b);
rng.discard(n);
return dist(rng);
}
};
void GPU_Print_Matrix(real_t *A, int nrows, int ncols) {
real_t *hostA = (real_t*)malloc(nrows*ncols * sizeof(real_t));
cudaMemcpy(hostA, A, nrows*ncols * sizeof(real_t), cudaMemcpyDeviceToHost);
std::cout << "GPU Matrix of Size: " << nrows << "x" << ncols << std::endl;
for (int i = 0; i < nrows; ++i) {
for (int j = 0; j < ncols; ++j) {
std::cout << std::fixed << std::setprecision(PRINT_PRECISION) << hostA[j*nrows + i] << " ";
}
std::cout << std::endl;
}
free(hostA);
std::cout << std::endl;
}
void GPU_Random_Vector(thrust::device_vector <real_t> &vec) {
const real_t initRange = 10;
thrust::counting_iterator<unsigned int> index_sequence_begin(std::rand());
thrust::transform(index_sequence_begin, index_sequence_begin + vec.size(), vec.begin(), RANDOM(-initRange, initRange));
}
int main(int argc, char *argv[]) {
std::srand(std::time(0));
std::cout << "# Running NMT" << std::endl;
cublasHandle_t handle;
CUBLAS_SAFE_CALL(cublasCreate(&handle));
thrust::device_vector <real_t> x(10);
GPU_Random_Vector(x);
GPU_Print_Matrix(thrust::raw_pointer_cast(&x[0]), 10, 1);
real_t nrm = 0;
CUBLAS_SAFE_CALL(cublasSnrm2(handle, 10, thrust::raw_pointer_cast(&x[0]), 1, &nrm));
std::cout << "nrm2 = " << nrm << std::endl;
}
编译并运行如下(CUDA 6.5,如果重要的话):
>nvcc -arch=sm_21 -run runkkari.cu -lcublas
runkkari.cu
Creating library a.lib and object a.exp
# Running NMT
GPU Matrix of Size: 10x1
-5.712992
8.181723
-0.086308
-6.177320
-5.442665
-2.889552
-1.555665
6.506872
-6.800190
8.024273
nrm2 = 18.196394
它按预期工作。你应该能够编译并运行它来自己确认。因此,我们只能得出结论,你有另一个你未能描述的问题。但也许这有助于缩小可能性列表。