如何在没有SQL查询的情况下使用Spark Dataframe检查是否相等?

时间:2015-07-09 17:37:32

标签: scala apache-spark dataframe apache-spark-sql

我想选择一个等于某个值的列。我在scala中做这件事并且有点麻烦。

继承我的代码

df.select(df("state")==="TX").show()

这将返回带有布尔值的状态列,而不仅仅是TX

我也试过

df.select(df("state")=="TX").show() 

但这也不起作用。

10 个答案:

答案 0 :(得分:54)

我遇到了同样的问题,以下语法对我有用:

df.filter(df("state")==="TX").show()

我使用的是Spark 1.6。

答案 1 :(得分:21)

还有另一个简单的sql选项。使用Spark 1.6下面也应该可以工作。

null

这是一种指定类似过滤器的sql的新方法。有关支持的运算符的完整列表,请查看this类。

答案 2 :(得分:14)

您应该使用whereselect是一个返回语句输出的投影,因此您获得布尔值的原因。 where是一个过滤器,用于保存数据框的结构,但只保留过滤器工作的数据。

尽管如此,根据文档,您可以用3种不同的方式编写

// The following are equivalent:
peopleDf.filter($"age" > 15)
peopleDf.where($"age" > 15)
peopleDf($"age" > 15)

答案 3 :(得分:9)

为了得到否定,请这样做......

df.filter(not( ..expression.. ))

例如

df.filter(not($"state" === "TX"))

答案 4 :(得分:8)

df.filter($"state" === "TX")用于模式匹配

df.filter("state = 'TX'")DataAdapter.Filter表示平等

答案 5 :(得分:3)

我们可以在Dataframe中编写多个Filter / where条件。

例如:

table1_df
.filter($"Col_1_name" === "buddy")  // check for equal to string
.filter($"Col_2_name" === "A")
.filter(not($"Col_2_name".contains(" .sql")))  // filter a string which is    not relevent
.filter("Col_2_name is not null")   // no null filter
.take(5).foreach(println)

答案 6 :(得分:2)

使用Spark V2。*

import sqlContext.implicits._
df.filter($"state" === "TX")

如果需要与变量(例如var)进行比较:

import sqlContext.implicits._
df.filter($"state" === var)
  

注意:import sqlContext.implicits._

答案 7 :(得分:1)

这是使用spark2.2 +在json中获取数据的完整示例...

val myjson = "[{\"name\":\"Alabama\",\"abbreviation\":\"AL\"},{\"name\":\"Alaska\",\"abbreviation\":\"AK\"},{\"name\":\"American Samoa\",\"abbreviation\":\"AS\"},{\"name\":\"Arizona\",\"abbreviation\":\"AZ\"},{\"name\":\"Arkansas\",\"abbreviation\":\"AR\"},{\"name\":\"California\",\"abbreviation\":\"CA\"},{\"name\":\"Colorado\",\"abbreviation\":\"CO\"},{\"name\":\"Connecticut\",\"abbreviation\":\"CT\"},{\"name\":\"Delaware\",\"abbreviation\":\"DE\"},{\"name\":\"District Of Columbia\",\"abbreviation\":\"DC\"},{\"name\":\"Federated States Of Micronesia\",\"abbreviation\":\"FM\"},{\"name\":\"Florida\",\"abbreviation\":\"FL\"},{\"name\":\"Georgia\",\"abbreviation\":\"GA\"},{\"name\":\"Guam\",\"abbreviation\":\"GU\"},{\"name\":\"Hawaii\",\"abbreviation\":\"HI\"},{\"name\":\"Idaho\",\"abbreviation\":\"ID\"},{\"name\":\"Illinois\",\"abbreviation\":\"IL\"},{\"name\":\"Indiana\",\"abbreviation\":\"IN\"},{\"name\":\"Iowa\",\"abbreviation\":\"IA\"},{\"name\":\"Kansas\",\"abbreviation\":\"KS\"},{\"name\":\"Kentucky\",\"abbreviation\":\"KY\"},{\"name\":\"Louisiana\",\"abbreviation\":\"LA\"},{\"name\":\"Maine\",\"abbreviation\":\"ME\"},{\"name\":\"Marshall Islands\",\"abbreviation\":\"MH\"},{\"name\":\"Maryland\",\"abbreviation\":\"MD\"},{\"name\":\"Massachusetts\",\"abbreviation\":\"MA\"},{\"name\":\"Michigan\",\"abbreviation\":\"MI\"},{\"name\":\"Minnesota\",\"abbreviation\":\"MN\"},{\"name\":\"Mississippi\",\"abbreviation\":\"MS\"},{\"name\":\"Missouri\",\"abbreviation\":\"MO\"},{\"name\":\"Montana\",\"abbreviation\":\"MT\"},{\"name\":\"Nebraska\",\"abbreviation\":\"NE\"},{\"name\":\"Nevada\",\"abbreviation\":\"NV\"},{\"name\":\"New Hampshire\",\"abbreviation\":\"NH\"},{\"name\":\"New Jersey\",\"abbreviation\":\"NJ\"},{\"name\":\"New Mexico\",\"abbreviation\":\"NM\"},{\"name\":\"New York\",\"abbreviation\":\"NY\"},{\"name\":\"North Carolina\",\"abbreviation\":\"NC\"},{\"name\":\"North Dakota\",\"abbreviation\":\"ND\"},{\"name\":\"Northern Mariana Islands\",\"abbreviation\":\"MP\"},{\"name\":\"Ohio\",\"abbreviation\":\"OH\"},{\"name\":\"Oklahoma\",\"abbreviation\":\"OK\"},{\"name\":\"Oregon\",\"abbreviation\":\"OR\"},{\"name\":\"Palau\",\"abbreviation\":\"PW\"},{\"name\":\"Pennsylvania\",\"abbreviation\":\"PA\"},{\"name\":\"Puerto Rico\",\"abbreviation\":\"PR\"},{\"name\":\"Rhode Island\",\"abbreviation\":\"RI\"},{\"name\":\"South Carolina\",\"abbreviation\":\"SC\"},{\"name\":\"South Dakota\",\"abbreviation\":\"SD\"},{\"name\":\"Tennessee\",\"abbreviation\":\"TN\"},{\"name\":\"Texas\",\"abbreviation\":\"TX\"},{\"name\":\"Utah\",\"abbreviation\":\"UT\"},{\"name\":\"Vermont\",\"abbreviation\":\"VT\"},{\"name\":\"Virgin Islands\",\"abbreviation\":\"VI\"},{\"name\":\"Virginia\",\"abbreviation\":\"VA\"},{\"name\":\"Washington\",\"abbreviation\":\"WA\"},{\"name\":\"West Virginia\",\"abbreviation\":\"WV\"},{\"name\":\"Wisconsin\",\"abbreviation\":\"WI\"},{\"name\":\"Wyoming\",\"abbreviation\":\"WY\"}]"
import spark.implicits._
val df = spark.read.json(Seq(myjson).toDS)
df.show 
   import spark.implicits._
    val df = spark.read.json(Seq(myjson).toDS)
    df.show

    scala> df.show
    +------------+--------------------+
    |abbreviation|                name|
    +------------+--------------------+
    |          AL|             Alabama|
    |          AK|              Alaska|
    |          AS|      American Samoa|
    |          AZ|             Arizona|
    |          AR|            Arkansas|
    |          CA|          California|
    |          CO|            Colorado|
    |          CT|         Connecticut|
    |          DE|            Delaware|
    |          DC|District Of Columbia|
    |          FM|Federated States ...|
    |          FL|             Florida|
    |          GA|             Georgia|
    |          GU|                Guam|
    |          HI|              Hawaii|
    |          ID|               Idaho|
    |          IL|            Illinois|
    |          IN|             Indiana|
    |          IA|                Iowa|
    |          KS|              Kansas|
    +------------+--------------------+

    // equals matching
    scala> df.filter(df("abbreviation") === "TX").show
    +------------+-----+
    |abbreviation| name|
    +------------+-----+
    |          TX|Texas|
    +------------+-----+
    // or using lit

    scala> df.filter(df("abbreviation") === lit("TX")).show
    +------------+-----+
    |abbreviation| name|
    +------------+-----+
    |          TX|Texas|
    +------------+-----+

    //not expression
    scala> df.filter(not(df("abbreviation") === "TX")).show
    +------------+--------------------+
    |abbreviation|                name|
    +------------+--------------------+
    |          AL|             Alabama|
    |          AK|              Alaska|
    |          AS|      American Samoa|
    |          AZ|             Arizona|
    |          AR|            Arkansas|
    |          CA|          California|
    |          CO|            Colorado|
    |          CT|         Connecticut|
    |          DE|            Delaware|
    |          DC|District Of Columbia|
    |          FM|Federated States ...|
    |          FL|             Florida|
    |          GA|             Georgia|
    |          GU|                Guam|
    |          HI|              Hawaii|
    |          ID|               Idaho|
    |          IL|            Illinois|
    |          IN|             Indiana|
    |          IA|                Iowa|
    |          KS|              Kansas|
    +------------+--------------------+
    only showing top 20 rows

答案 8 :(得分:0)

在Spark 2.4中

要与一个值进行比较:

df.filter(lower(trim($"col_name")) === "<value>").show()

要与价值收集进行比较:

df.filter($"col_name".isInCollection(new HashSet<>(Arrays.asList("value1", "value2")))).show()

答案 9 :(得分:0)

让我们创建一个样本数据集,并深入探究OP的代码为什么不起作用。

这是我们的示例数据:

val df = Seq(
  ("Rockets", 2, "TX"),
  ("Warriors", 6, "CA"),
  ("Spurs", 5, "TX"),
  ("Knicks", 2, "NY")
).toDF("team_name", "num_championships", "state")

我们可以使用show()方法漂亮地打印数据集:

+---------+-----------------+-----+
|team_name|num_championships|state|
+---------+-----------------+-----+
|  Rockets|                2|   TX|
| Warriors|                6|   CA|
|    Spurs|                5|   TX|
|   Knicks|                2|   NY|
+---------+-----------------+-----+

让我们检查df.select(df("state")==="TX").show()的结果:

+------------+
|(state = TX)|
+------------+
|        true|
|       false|
|        true|
|       false|
+------------+

通过简单地添加一列-df.withColumn("is_state_tx", df("state")==="TX").show()

+---------+-----------------+-----+-----------+
|team_name|num_championships|state|is_state_tx|
+---------+-----------------+-----+-----------+
|  Rockets|                2|   TX|       true|
| Warriors|                6|   CA|      false|
|    Spurs|                5|   TX|       true|
|   Knicks|                2|   NY|      false|
+---------+-----------------+-----+-----------+

OP尝试使用的其他代码(df.select(df("state")=="TX").show())返回此错误:

<console>:27: error: overloaded method value select with alternatives:
  [U1](c1: org.apache.spark.sql.TypedColumn[org.apache.spark.sql.Row,U1])org.apache.spark.sql.Dataset[U1] <and>
  (col: String,cols: String*)org.apache.spark.sql.DataFrame <and>
  (cols: org.apache.spark.sql.Column*)org.apache.spark.sql.DataFrame
 cannot be applied to (Boolean)
       df.select(df("state")=="TX").show()
          ^

===运算符在Column class中定义。 Column类没有定义==运算符,这就是该代码出错的原因。阅读this blog,了解有关Spark Column类的更多背景信息。

这是行之有效的答案:

df.filter(df("state")==="TX").show()

+---------+-----------------+-----+
|team_name|num_championships|state|
+---------+-----------------+-----+
|  Rockets|                2|   TX|
|    Spurs|                5|   TX|
+---------+-----------------+-----+

正如其他张贴者所提到的那样,===方法采用Any类型的参数,因此这不是唯一可行的解​​决方案。例如,这也可以工作:

df.filter(df("state") === lit("TX")).show

+---------+-----------------+-----+
|team_name|num_championships|state|
+---------+-----------------+-----+
|  Rockets|                2|   TX|
|    Spurs|                5|   TX|
+---------+-----------------+-----+

也可以使用Column equalTo方法:

df.filter(df("state").equalTo("TX")).show()

+---------+-----------------+-----+
|team_name|num_championships|state|
+---------+-----------------+-----+
|  Rockets|                2|   TX|
|    Spurs|                5|   TX|
+---------+-----------------+-----+

值得详细研究此示例。 Scala的语法有时看起来很神奇,尤其是在没有点号的情况下调用方法时。未经训练的眼睛很难看到===Column类中定义的方法!

如果您想进一步了解Spark列相等性,请参见this blog post