我的数据如下:
term date change1 change2
aaa 2010-03-01 23.00 24.31
bbb 2010-03-01 25.00 0.00
ccc 2012-05-01 100.00 100.00
日期列可以包含重复日期。我想为每个术语绘制,即change1和change2是什么。我想把这个术语作为x轴,并且change1和change2共享相同的y轴,但是并排绘制成条形图。 我知道如何做y轴部分,但不知道如何设置x轴。我也希望每个术语以某种方式显示日期,如果可能的话,否则这不是优先事项。
以下是我所拥有的:
fig = plt.figure()
ax = fig.add_subplot(111)
ax2 = ax.twinx()
df.change1.plot(kind = 'bar', color = 'red', ax = ax , position = 1)
df.change2.plot(kind = 'bar', color = 'blue', ax = ax2, position = 2)
ax.set_ylabel= ('change1')
ax2.set_ylabel=('change2')
plt.show()
谢谢,
答案 0 :(得分:4)
将x-axis
上的标签设为term
的一种方法是将term
设置为索引:
df = df.set_index(['term'])
例如,
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame({'change1': [23.0, 25.0, 100.0],
'change2': [24.309999999999999, 0.0, 100.0],
'date': ['2010-03-01', '2010-03-01', '2012-05-01'],
'term': ['aaa', 'bbb', 'ccc']})
df = df.set_index(['term'])
fig = plt.figure()
ax = fig.add_subplot(111)
ax2 = ax.twinx()
df['change1'].plot(kind='bar', color='red', ax=ax, position=0, width=0.25)
df['change2'].plot(kind='bar', color='blue', ax=ax2, position=1, width=0.25)
ax.set_ylabel = ('change1')
ax2.set_ylabel = ('change2')
plt.show()
或者,您可以明确地设置xticklabels:
,而不是设置索引import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame({'change1': [23.0, 25.0, 100.0],
'change2': [24.309999999999999, 0.0, 100.0],
'date': ['2010-03-01', '2010-03-01', '2012-05-01'],
'term': ['aaa', 'bbb', 'ccc']})
fig = plt.figure()
ax = fig.add_subplot(111)
ax2 = ax.twinx()
df['change1'].plot(kind='bar', color='red', ax=ax, position=0, width=0.25)
df['change2'].plot(kind='bar', color='blue', ax=ax2, position=1, width=0.25)
ax.set_ylabel = 'change1'
ax2.set_ylabel = 'change2'
labels = ['{}\n{}'.format(date, term) for date, term in zip(df['date'], df['term'])]
ax.set_xticklabels(labels, minor=False)
fig.autofmt_xdate()
plt.show()
根据评论中的问题,
要为每个date
创建一个新的图,您可以迭代这些组
df.groupby(['date'])
:
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame({'change1': [23.0, 25.0, 100.0],
'change2': [24.309999999999999, 0.0, 100.0],
'date': ['2010-03-01', '2010-03-01', '2012-05-01'],
'term': ['aaa', 'bbb', 'ccc']})
groups = df.groupby(['date'])
fig, axs = plt.subplots(nrows=groups.ngroups)
for groupi, ax in zip(groups,axs):
index, grp = groupi
ax2 = ax.twinx()
grp['change1'].plot(kind='bar', color='red', ax=ax, position=0, width=0.25)
grp['change2'].plot(kind='bar', color='blue', ax=ax2, position=1, width=0.25)
ax.set_ylabel = 'change1'
ax2.set_ylabel = 'change2'
ax.set_title(index)
ax.set_xticklabels(grp['term'].tolist(), minor=False, rotation=0)
fig.tight_layout()
plt.show()