我正试图将这个美国人口普查平面文件转换为:http://www2.census.gov/govs/retire/2013indiv_unit_reported_data.txt在Python中。
在第一列中,前14个字符代表一行,后三个代表一列。第二列是该列和行的值。似乎无法找到一种使用Python将其变成表格的好方法。
附注:我的最终目标是创建一个脚本,自动将这些类型的文件导入ArcGIS,这就是我尝试在Python中执行此操作的原因。
答案 0 :(得分:4)
虽然您也可以在纯Python中执行此操作,但使用pandas
会使这成为一个非常简单的问题,因为它是一个数据透视操作:
df = pd.read_csv("2013indiv_unit_reported_data.txt", delim_whitespace=True,
names=["rowcol", "data"])
df["row"] = df["rowcol"].str[:14]
df["col"] = df["rowcol"].str[14:]
df_new = df.pivot(index="row", columns="col", values="data")
df_new = df_new.fillna("")
df_new.to_csv("table.dat", index=False)
生成一个左上角看起来像
的DataFrame>>> df_new.iloc[:5,:5]
col V87 X01 X02 X04 X05
row
01000000003401 0131312 139748131312 82075131312 213456131312
01000000003402 01313NR 474241131312 01313NR 627892131312
01000000003403 01313NR 01313NR 3677131312 0131312
01000000003701 01313NR 578131312 01313NR 3309131312
01103703710000 122741313NR 119541313NR 27761313NR
和输出数据文件看起来像
>>> !head table.dat
V87,X01,X02,X04,X05,X06,X08,X11,X12,X21,X30,X33,X35,X42,X44,X46,X47,Z01,Z02,Z03,Z04,Z05,Z13,Z14,Z15,Z16,Z62,Z63,Z68,Z70,Z71,Z72,Z73,Z75,Z76,Z77,Z78,Z81,Z82,Z83,Z84,Z87,Z88,Z89,Z91,Z93,Z96,Z98,Z99
0131312,139748131312,82075131312,,213456131312,125363131312,1294714131312,895475131312,44837131312,393606131312,0131312,0131312,0131312,0131312,1309366131312,955067131312,3333131312,84169131312,10554131312,35773131312,3826131312,3498131312,780456131312,87838131312,27181131312,0131312,0131312,2266097131312,389145131312,1309366131312,172000131312,138000131312,0131312,53844131312,30325131312,2266097131312,5056820131312,9984289131312,958400131312,0131312,0131312,0131312,4461131312,0131312,01313NR,9767131312,984714131312,0131312,125363131312
01313NR,474241131312,01313NR,,627892131312,0131312,27384181313NR,1893321131312,55891131312,404296131312,932401131312,219743131312,01313NR,01313NR,29514461313NR,1963274131312,01313NR,133791131312,18568131312,69259131312,4990131312,4121131312,1720307131312,119270131312,53744131312,0131312,61902131312,3830519131312,378156131312,2951446131312,334155131312,304611131312,9006131312,01313NR,1337911313NR,38305191313NR,10514970131312,20596906131312,1963274131312,01313NR,01313NR,01313NR,26140131312,650756131312,01313NR,34803131312,2090646131312,01313NR,01313NR
如果您真的想手动完成,那么这样的事情应该有效:
with open("2013indiv_unit_reported_data.txt") as fp:
all_data = {}
for line in fp:
rowcol, data = line.split()
row, col = rowcol[:14], rowcol[14:]
all_data[row, col] = data
import csv
rows, cols = [sorted({key[i] for key in all_data}) for i in range(2)]
with open("table2.dat", "wb") as fp: # python 2
writer = csv.writer(fp)
writer.writerow(cols)
for row in rows:
line = [all_data.get((row, col), '') for col in cols]
writer.writerow(line)