实际上我正在处理一个基于文本的定向图表,其中每个单词都是图表中的一个节点,边缘位于文本句子中的两个相邻单词之间。
我需要找到从 START 节点到 END 节点的所有路径。
是否有任何 Python 库可以帮助我完成任务?
我实际上尝试用 networkx 来做这件事,但是对于networkx的问题是它只输出简单的路径(简单路径对于输入中的长句子来说非常简短,并且不包含很多信息。句子)。我的任务需要更复杂的路径。
答案 0 :(得分:-1)
您需要为DFS
(深度优先搜索)或BFS
(广度优先搜索)编写算法以收集所有路径。下面是收集从java编写的source
到destination
的所有可能路径的示例。
package com.nirav.modi;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
class Graph<T> implements Iterable<T> {
/*
* A map from nodes in the graph to sets of outgoing edges. Each set of
* edges is represented by a map from edges to doubles.
*/
private final Map<T, Map<T, Double>> graph = new HashMap<T, Map<T, Double>>();
/**
* Adds a new node to the graph. If the node already exists then its a
* no-op.
*
* @param node
* Adds to a graph. If node is null then this is a no-op.
* @return true if node is added, false otherwise.
*/
public boolean addNode(T node) {
if (node == null) {
throw new NullPointerException("The input node cannot be null.");
}
if (graph.containsKey(node))
return false;
graph.put(node, new HashMap<T, Double>());
return true;
}
/**
* Given the source and destination node it would add an arc from source to
* destination node. If an arc already exists then the value would be
* updated the new value.
*
* @param source
* the source node.
* @param destination
* the destination node.
* @param length
* if length if
* @throws NullPointerException
* if source or destination is null.
* @throws NoSuchElementException
* if either source of destination does not exists.
*/
public void addEdge(T source, T destination, double length) {
if (source == null || destination == null) {
throw new NullPointerException("Source and Destination, both should be non-null.");
}
if (!graph.containsKey(source) || !graph.containsKey(destination)) {
throw new NoSuchElementException("Source and Destination, both should be part of graph");
}
/* A node would always be added so no point returning true or false */
graph.get(source).put(destination, length);
}
/**
* Removes an edge from the graph.
*
* @param source
* If the source node.
* @param destination
* If the destination node.
* @throws NullPointerException
* if either source or destination specified is null
* @throws NoSuchElementException
* if graph does not contain either source or destination
*/
public void removeEdge(T source, T destination) {
if (source == null || destination == null) {
throw new NullPointerException("Source and Destination, both should be non-null.");
}
if (!graph.containsKey(source) || !graph.containsKey(destination)) {
throw new NoSuchElementException("Source and Destination, both should be part of graph");
}
graph.get(source).remove(destination);
}
/**
* Given a node, returns the edges going outward that node, as an immutable
* map.
*
* @param node
* The node whose edges should be queried.
* @return An immutable view of the edges leaving that node.
* @throws NullPointerException
* If input node is null.
* @throws NoSuchElementException
* If node is not in graph.
*/
public Map<T, Double> edgesFrom(T node) {
if (node == null) {
throw new NullPointerException("The node should not be null.");
}
Map<T, Double> edges = graph.get(node);
if (edges == null) {
throw new NoSuchElementException("Source node does not exist.");
}
return Collections.unmodifiableMap(edges);
}
/**
* Returns the iterator that travels the nodes of a graph.
*
* @return an iterator that travels the nodes of a graph.
*/
@Override
public Iterator<T> iterator() {
return graph.keySet().iterator();
}
}
/**
* Given a connected directed graph, find all paths between any two input
* points.
*/
public class GraphTester<T> {
private final Graph<T> graph;
/**
* Takes in a graph. This graph should not be changed by the client
*/
public GraphTester(Graph<T> graph) {
if (graph == null) {
throw new NullPointerException("The input graph cannot be null.");
}
this.graph = graph;
}
private void validate(T source, T destination) {
if (source == null) {
throw new NullPointerException("The source: " + source + " cannot be null.");
}
if (destination == null) {
throw new NullPointerException("The destination: " + destination + " cannot be null.");
}
if (source.equals(destination)) {
throw new IllegalArgumentException("The source and destination: " + source + " cannot be the same.");
}
}
/**
* Returns the list of paths, where path itself is a list of nodes.
*
* @param source
* the source node
* @param destination
* the destination node
* @return List of all paths
*/
public List<List<T>> getAllPaths(T source, T destination) {
validate(source, destination);
List<List<T>> paths = new ArrayList<List<T>>();
recursive(source, destination, paths, new LinkedHashSet<T>());
return paths;
}
// so far this dude ignore's cycles.
private void recursive(T current, T destination, List<List<T>> paths, LinkedHashSet<T> path) {
path.add(current);
if (current == destination) {
paths.add(new ArrayList<T>(path));
path.remove(current);
return;
}
final Set<T> edges = graph.edgesFrom(current).keySet();
for (T t : edges) {
if (!path.contains(t)) {
recursive(t, destination, paths, path);
}
}
path.remove(current);
}
public static void main(String[] args) {
Graph<String> graphFindAllPaths = new Graph<String>();
graphFindAllPaths.addNode("A");
graphFindAllPaths.addNode("B");
graphFindAllPaths.addNode("C");
graphFindAllPaths.addNode("D");
graphFindAllPaths.addEdge("A", "B", 10);
graphFindAllPaths.addEdge("A", "C", 10);
graphFindAllPaths.addEdge("B", "D", 10);
graphFindAllPaths.addEdge("C", "D", 10);
graphFindAllPaths.addEdge("B", "C", 10);
graphFindAllPaths.addEdge("C", "B", 10);
GraphTester<String> findAllPaths = new GraphTester<String>(graphFindAllPaths);
List<List<String>> allPaths = findAllPaths.getAllPaths("A", "D");
System.out.println(allPaths);
// assertEquals(paths, findAllPaths.getAllPaths("A", "D"));
}
}