我有一个无向图,如:
import igraph as ig
G = ig.Graph()
G.add_vertices(9)
G.add_edges([(0,1), (1,2),(2,3),(3,0),(0,4),(4,5),(5,6),(6,7),(6,8)])
从节点0到1,2,3有一个“循环路径”回到0(对不起,在pic中节点标签以1而不是0开始)
对于赋值,我需要识别“循环路径”连接到图的其余部分的节点,即0
,最重要的是,“循环路径”本身,即{{1 }和/或[0,1,2,3,0]
我正在努力,但真的没有任何线索。如果我使用here中的[0,3,2,1,0]
函数,我当然只会find_all_paths(G,0,0)
答案 0 :(得分:2)
由于问题也是用networkx标记的,我用它来举例说明代码。
在图论中,“循环路径”通常称为循环。
我看到的最简单(可能不是最快)的想法是找到周期和一组关节点(或切割椎体,即增加连接组件数量的点),然后它们的交点就是解决方案。 / p>
以同样的方式开始:
import networkx as nx
G.add_nodes_from([9])
G.add_edges_from([(0,1), (1,2),(2,3),(3,0),(0,4),(4,5),(5,6),(6,7),(6,8)])
现在问题的解决方案:
cycles = nx.cycle_basis(G) # list of cycles
cuts = list(nx.articulation_points(G)) # list of cut verteces
nodes_needed = set() # the set of nodes we are looking for
for cycle in cycles:
for node in cycle:
if node in cuts:
nodes_needed.add(node)
答案 1 :(得分:1)
以下是使用广度优先搜索查找循环的示例。我想知道是否存在更有效的方法。如果是中等大图或更长的最大循环长度,这可能会持续很长时间。深度优先搜索也可以做同样的事情。首先,我相信您使用R
发布了问题,因此请在下面找到R
版本。 python
版本由于同样的原因而不是完全pythonic,因为我从R
快速翻译。
有关说明,请参阅代码中的注释。
import igraph
# creating a toy graph
g = igraph.Graph.Erdos_Renyi(n = 100, p = 0.04)
# breadth first search of paths and unique loops
def get_loops(adj, paths, maxlen):
# tracking the actual path length:
maxlen -= 1
nxt_paths = []
# iterating over all paths:
for path in paths['paths']:
# iterating neighbors of the last vertex in the path:
for nxt in adj[path[-1]]:
# attaching the next vertex to the path:
nxt_path = path + [nxt]
if path[0] == nxt and min(path) == nxt:
# the next vertex is the starting vertex, we found a loop
# we keep the loop only if the starting vertex has the
# lowest vertex id, to avoid having the same loops
# more than once
paths['loops'].append(nxt_path)
# if you don't need the starting vertex
# included at the end:
# paths$loops <- c(paths$loops, list(path))
elif nxt not in path:
# keep the path only if we don't create
# an internal loop in the path
nxt_paths.append(nxt_path)
# paths grown by one step:
paths['paths'] = nxt_paths
if maxlen == 0:
# the final return when maximum search length reached
return paths
else:
# recursive return, to grow paths further
return get_loops(adj, paths, maxlen)
adj = []
loops = []
# the maximum length to limit computation time on large graphs
# maximum could be vcount(graph), but that might take for ages
maxlen = 4
# creating an adjacency list
# for directed graphs use the 'mode' argument of neighbors()
# according to your needs ('in', 'out' or 'all')
adj = [[n.index for n in v.neighbors()] for v in g.vs]
# recursive search of loops
# for each vertex as candidate starting point
for start in xrange(g.vcount()):
loops += get_loops(adj,
{'paths': [[start]], 'loops': []}, maxlen)['loops']
R
:
require(igraph)
# creating a toy graph
g <- erdos.renyi.game(n = 100, p.or.m = 0.04)
# breadth first search of paths and unique loops
get_loops <- function(adj, paths, maxlen){
# tracking the actual path length:
maxlen <- maxlen - 1
nxt_paths <- list()
# iterating over all paths:
for(path in paths$paths){
# iterating neighbors of the last vertex in the path:
for(nxt in adj[[path[length(path)]]]){
# attaching the next vertex to the path:
nxt_path <- c(path, nxt)
if(path[1] == nxt & min(path) == nxt){
# the next vertex is the starting vertex, we found a loop
# we keep the loop only if the starting vertex has the
# lowest vertex id, to avoid having the same loops
# more than once
paths$loops <- c(paths$loops, list(nxt_path))
# if you don't need the starting vertex included
# at the end:
# paths$loops <- c(paths$loops, list(path))
}else if(!(nxt %in% path)){
# keep the path only if we don't create
# an internal loop in the path
nxt_paths <- c(nxt_paths, list(nxt_path))
}
}
}
# paths grown by one step:
paths$paths <- nxt_paths
if(maxlen == 0){
# the final return when maximum search length reached
return(paths)
}else{
# recursive return, to grow paths further
return(get_loops(adj, paths, maxlen))
}
}
adj <- list()
loops <- list()
# the maximum length to limit computation time on large graphs
# maximum could be vcount(graph), but that might take for ages
maxlen <- 4
# creating an adjacency list
for(v in V(g)){
# for directed graphs use the 'mode' argument of neighbors()
# according to your needs ('in', 'out' or 'all')
adj[[as.numeric(v)]] <- neighbors(g, v)
}
# recursive search of loops
# for each vertex as candidate starting point
for(start in seq(length(adj))){
loops <- c(loops, get_loops(adj, list(paths = list(c(start)),
loops = list()), maxlen)$loops)
}
答案 2 :(得分:1)
好的,这是我自己问题答案的第一部分:
感谢Max Li's和deeenes'的帮助,我想改写networkx cycle_basis function以便在python_igraph中工作:
SELECT pi.desc,
pa.nameAddress,
pi.ref,
pi.descItem,
pi.quantity,
pi.totalDF,
pi.code,
pi.codeBL,
cl.dateShip, po.dtValidated, po.supervisorDate, DATEDIFF(po.supervisorDate, po.dtValidated) AS 'diffValidSupervisor',
DATEDIFF(cl.dtlivr, po.supervisorDate) AS 'diffExpeValid', year(cl.dtlivr), month(cl.dtlivr) FROM
new.proforma_item pi
INNER JOIN
old.cdestk_lig cl ON pi.codeCde = cl.codcde INNER JOIN new.proforma po ON po.idProforma = pi.idProforma
Inner JOIN new.proforma_address pa ON po.idProforma = pa.idProforma GROUP BY pi.desc, pi.ref, pi.descItem, pi.code, pi.codeBL, cl.dateShip,
po.dtValidated, po.supervisorDate, month(cl.dateShip), po.dateInvoice
HAVING (po.dateInvoice between CONCAT(YEAR(CURDATE()),'-01-01') AND last_day(curdate()-interval 1 month))
答案 3 :(得分:0)
对于大图和有向图,@ deeenes的答案是正确的,并且是python版本 是O.K.,但R版本存在瓶颈,无法复制列表时间和时间 再次,我通过以下方式解决了性能问题:
# breadth first search of paths and unique loops
get_loops <- function(adj, paths, maxlen) {
# tracking the actual path length:
maxlen <- maxlen - 1
nxt_paths <- list()
# count of loops and paths in the next step, avoid copying lists that cause performance bottleneck.
if (is.null(paths$lc))
paths$lc <- 0
paths$pc <- 0
# iterating over all paths:
for (path in paths$paths) {
# iterating neighbors of the last vertex in the path:
for (nxt in adj[[path[length(path)]]]) {
# attaching the next vertex to the path:
nxt_path <- c(path, nxt)
if (path[1] == nxt & min(path) == nxt) {
# the next vertex is the starting vertex, we found a loop
# we keep the loop only if the starting vertex has the
# lowest vertex id, to avoid having the same loops
# more than once
paths$lc <- paths$lc + 1
paths$loops[paths$lc] <- list(nxt_path)
# if you don't need the starting vertex included
# at the end:
# paths$loops <- c(paths$loops, list(path))
# cat(paste(paths$loops,collapse=","));cat("\n")
} else if (!(nxt %in% path)) {
# keep the path only if we don't create
# an internal loop in the path
paths$pc <- paths$pc + 1
nxt_paths[paths$pc] <- list(nxt_path)
}
}
}
# paths grown by one step:
paths$paths <- nxt_paths
if (maxlen == 0) {
# the final return when maximum search length reached
return(paths)
} else{
# recursive return, to grow paths further
return(get_loops(adj, paths, maxlen))
}
}