我有一个TransformManyBlock
,其设计如下:
我在一个巨大的文件(61GB)上运行这个块,这个文件太大而无法放入RAM中。为了避免无限制的内存增长,我已将BoundedCapacity
设置为此块的非常低的值(例如1)以及所有下游块。尽管如此,该块显然会贪婪地迭代IEnumerable,它消耗了计算机上的所有可用内存,使每个进程停止运行。在我终止进程之前,块的OutputCount不受限制地继续上升。
我该怎么做才能阻止该块以这种方式使用IEnumerable
?
编辑:这是一个说明问题的示例程序:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;
using System.Threading.Tasks.Dataflow;
class Program
{
static IEnumerable<string> GetSequence(char c)
{
for (var i = 0; i < 1024 * 1024; ++i)
yield return new string(c, 1024 * 1024);
}
static void Main(string[] args)
{
var options = new ExecutionDataflowBlockOptions() { BoundedCapacity = 1 };
var firstBlock = new TransformManyBlock<char, string>(c => GetSequence(c), options);
var secondBlock = new ActionBlock<string>(str =>
{
Console.WriteLine(str.Substring(0, 10));
Thread.Sleep(1000);
}, options);
firstBlock.LinkTo(secondBlock);
firstBlock.Completion.ContinueWith(task =>
{
if (task.IsFaulted) ((IDataflowBlock) secondBlock).Fault(task.Exception);
else secondBlock.Complete();
});
firstBlock.Post('A');
firstBlock.Complete();
for (; ; )
{
Console.WriteLine("OutputCount: {0}", firstBlock.OutputCount);
Thread.Sleep(3000);
}
}
}
如果您使用的是64位信箱,请务必清除&#34;首选32位&#34; Visual Studio中的选项。我的计算机上有16GB的RAM,这个程序会立即占用每个可用的字节。
答案 0 :(得分:4)
您似乎误解了TPL Dataflow的工作原理。
BoundedCapacity
限制您可以发布到块中的项目数量。在您的情况下,这意味着单char
进入TransformManyBlock
,单string
进入ActionBlock
。
因此,您将单个项目发布到TransformManyBlock
,然后返回1024*1024
字符串并尝试将其传递给ActionBlock
,TransformManyBlock
一次只能接受一个字符串。其余的字符串将只位于private static void Main()
{
MainAsync().Wait();
}
private static async Task MainAsync()
{
var block = new ActionBlock<string>(async item =>
{
Console.WriteLine(item.Substring(0, 10));
await Task.Delay(1000);
}, new ExecutionDataflowBlockOptions { BoundedCapacity = 1 });
foreach (var item in GetSequence('A'))
{
await block.SendAsync(item);
}
block.Complete();
await block.Completion;
}
的输出队列中。
您可能想要做的是创建一个块并通过等待(同步或其他方式)达到其容量时以流式方式将项目发布到其中:
$.post("../admin-login",
{
dataName:JSON.stringify({
username:uname,
password:pass,
})
}, function(data,status){
console.log("Data:"+data);
answer = data;
}
);
答案 1 :(得分:0)
如果管道的输出比率小于发布比率,则消息将在管道上累积,直到内存用完或达到某个队列限制。 如果邮件的大小很大,进程将很快饿死。
如果将BoundedCapacity
设置为1,则如果队列中已有一条消息,则该消息将被队列拒绝。例如,在类似批处理的情况下,这不是期望的行为。选中此post以获得真知灼见。
此工作测试说明了我的观点:
//Change BoundedCapacity to +1 to see it fail
[TestMethod]
public void stackOverflow()
{
var total = 1000;
var processed = 0;
var block = new ActionBlock<int>(
(messageUnit) =>
{
Thread.Sleep(10);
Trace.WriteLine($"{messageUnit}");
processed++;
},
new ExecutionDataflowBlockOptions() { BoundedCapacity = -1 }
);
for (int i = 0; i < total; i++)
{
var result = block.SendAsync(i);
Assert.IsTrue(result.IsCompleted, $"failed for {i}");
}
block.Complete();
block.Completion.Wait();
Assert.AreEqual(total, processed);
}
所以我的方法是限制发布,因此管道不会在队列中累积大量消息。
下面是一种简单的方法。 这样,数据流将保持全速处理消息,但消息不会被累积,从而避免了过多的内存消耗。
//Should be adjusted for specific use.
public void postAssync(Message message)
{
while (totalPending = block1.InputCount + ... + blockn.InputCount> 100)
{
Thread.Sleep(200);
//Note: if allocating huge quantities for of memory for each message the Garbage collector may keep up with the pace.
//This is the perfect place to force garbage collector to release memory.
}
block1.SendAssync(message)
}
答案 2 :(得分:0)
似乎要创建一个输出受限的TransformManyBlock
,需要三个内部块:
TransformBlock
接收输入并产生IEnumerable
,可能并行运行。ActionBlock
枚举产生的IEnumerable
,并传播最终结果。 BufferBlock
,用于存储最终结果,并遵守期望的BoundedCapacity
。比较棘手的部分是如何传播第二个块的完成,因为它没有直接链接到第三个块。在下面的实现中,方法PropagateCompletion
是根据库的source code编写的。
public static IPropagatorBlock<TInput, TOutput>
CreateOutputBoundedTransformManyBlock<TInput, TOutput>(
Func<TInput, Task<IEnumerable<TOutput>>> transform,
ExecutionDataflowBlockOptions dataflowBlockOptions)
{
if (transform == null) throw new ArgumentNullException(nameof(transform));
if (dataflowBlockOptions == null)
throw new ArgumentNullException(nameof(dataflowBlockOptions));
var input = new TransformBlock<TInput, IEnumerable<TOutput>>(transform,
dataflowBlockOptions);
var output = new BufferBlock<TOutput>(dataflowBlockOptions);
var middle = new ActionBlock<IEnumerable<TOutput>>(async results =>
{
if (results == null) return;
foreach (var result in results)
{
var accepted = await output.SendAsync(result).ConfigureAwait(false);
if (!accepted) break; // If one is rejected, the rest will be rejected too
}
}, new ExecutionDataflowBlockOptions()
{
MaxDegreeOfParallelism = 1,
BoundedCapacity = dataflowBlockOptions.MaxDegreeOfParallelism,
CancellationToken = dataflowBlockOptions.CancellationToken,
SingleProducerConstrained = true,
});
input.LinkTo(middle, new DataflowLinkOptions() { PropagateCompletion = true });
PropagateCompletion(middle, output);
return DataflowBlock.Encapsulate(input, output);
async void PropagateCompletion(IDataflowBlock source, IDataflowBlock target)
{
try
{
await source.Completion.ConfigureAwait(false);
}
catch { }
var exception = source.Completion.IsFaulted ? source.Completion.Exception : null;
if (exception != null) target.Fault(exception); else target.Complete();
}
}
// Overload with synchronous delegate
public static IPropagatorBlock<TInput, TOutput>
CreateOutputBoundedTransformManyBlock<TInput, TOutput>(
Func<TInput, IEnumerable<TOutput>> transform,
ExecutionDataflowBlockOptions dataflowBlockOptions)
{
return CreateOutputBoundedTransformManyBlock<TInput, TOutput>(
item => Task.FromResult(transform(item)), dataflowBlockOptions);
}
用法示例:
var firstBlock = CreateOutputBoundedTransformManyBlock<char, string>(
c => GetSequence(c), options);