有人可以解释以下输出吗?除非我遗漏了某些东西(我可能是这样),否则似乎对data.table进行子集化的速度取决于存储在其中一列中的特定值,即使它们属于同一类并且除了它们之外没有明显的差异值。
这怎么可能?
> dim(otherTest)
[1] 3572069 2
> dim(test)
[1] 3572069 2
> length(unique(test$keys))
[1] 28741
> length(unique(otherTest$keys))
[1] 28742
> sapply(test,class)
thingy keys
"character" "character"
> sapply(otherTest,class)
thingy keys
"character" "character"
> class(test)
[1] "data.table" "data.frame"
> class(otherTest)
[1] "data.table" "data.frame"
> start = Sys.time()
> newTest = otherTest[keys%in%partition]
> end = Sys.time()
> print(end - start)
Time difference of 0.5438871 secs
> start = Sys.time()
> newTest = test[keys%in%partition]
> end = Sys.time()
> print(end - start)
Time difference of 42.78009 secs
摘要编辑:因此,速度的差异与不同大小的data.tables无关,也不与不同数量的唯一值有关。正如您在上面的修改示例中所看到的,即使在生成密钥以使它们具有相同数量的唯一值(并且在相同的一般范围内并且共享至少1个值,但通常是不同的)之后,我得到了相同的表现差异。
关于共享数据,遗憾的是我无法共享测试表,但我可以分享其他测试。整个想法是我试图尽可能地复制测试表(相同的大小,相同的类/类型,相同的键,NA值的数量等),以便我可以发布到SO - 但奇怪的是我的制作up data.table表现得非常不同,我无法弄清楚原因!
另外,我要补充一点,我怀疑这个问题的唯一原因来自data.table是几周前我遇到了一个类似的问题,对数据进行了子集化。结果证明这是一个真正的bug新的data.table版本(我最后删除了这个问题因为它是重复的)。该错误还涉及使用%in%函数来对data.table进行子集化 - 如果在%in%的右边参数中有重复,则返回重复的输出。因此,如果x = c(1,2,3)和y = c(1,1,2,2),%y中的x%将返回长度为8的向量。我有树脂封装data.table包,所以我不要认为它可能是同一个错误 - 但也许相关?
编辑(re Dean MacGregor')
> sapply(test,class)
thingy keys
"character" "character"
> sapply(otherTest,class)
thingy keys
"character" "character"
# benchmarking the original test table
> test2 =data.table(sapply(test ,as.numeric))
> otherTest2 =data.table(sapply(otherTest ,as.numeric))
> start = Sys.time()
> newTest = test[keys%in%partition])
> end = Sys.time()
> print(end - start)
Time difference of 52.68567 secs
> start = Sys.time()
> newTest = otherTest[keys%in%partition]
> end = Sys.time()
> print(end - start)
Time difference of 0.3503151 secs
#benchmarking after converting to numeric
> partition = as.numeric(partition)
> start = Sys.time()
> newTest = otherTest2[keys%in%partition]
> end = Sys.time()
> print(end - start)
Time difference of 0.7240109 secs
> start = Sys.time()
> newTest = test2[keys%in%partition]
> end = Sys.time()
> print(end - start)
Time difference of 42.18522 secs
#benchmarking again after converting back to character
> partition = as.character(partition)
> otherTest2 =data.table(sapply(otherTest2 ,as.character))
> test2 =data.table(sapply(test2 ,as.character))
> start = Sys.time()
> newTest =test2[keys%in%partition]
> end = Sys.time()
> print(end - start)
Time difference of 48.39109 secs
> start = Sys.time()
> newTest = data.table(otherTest2[keys%in%partition])
> end = Sys.time()
> print(end - start)
Time difference of 0.1846113 secs
所以减速并不依赖于阶级。
编辑:问题显然来自data.table,因为我可以转换为矩阵并且问题消失,然后转换回data.table并且问题又回来了。
编辑:我注意到问题与data.table函数如何处理重复有关,这听起来是正确的,因为它类似于我上周在上面描述的数据表1.9.4中发现的错误。> newTest =test[keys%in%partition]
> end = Sys.time()
> print(end - start)
Time difference of 39.19983 secs
> start = Sys.time()
> newTest =otherTest[keys%in%partition]
> end = Sys.time()
> print(end - start)
Time difference of 0.3776946 secs
> sum(duplicated(test))/length(duplicated(test))
[1] 0.991954
> sum(duplicated(otherTest))/length(duplicated(otherTest))
[1] 0.9918879
> otherTest[duplicated(otherTest)] =NA
> test[duplicated(test)]= NA
> start = Sys.time()
> newTest =otherTest[keys%in%partition]
> end = Sys.time()
> print(end - start)
Time difference of 0.2272599 secs
> start = Sys.time()
> newTest =test[keys%in%partition]
> end = Sys.time()
> print(end - start)
Time difference of 0.2041721 secs
因此,即使它们具有相同数量的重复项,两个data.tables(或者更具体地说,data.table中的%in%函数)显然也不同地处理重复项。与重复有关的另一个有趣的观察是这个(注意我再次从原始表开始):
> start = Sys.time()
> newTest =test[keys%in%unique(partition)]
> end = Sys.time()
> print(end - start)
Time difference of 0.6649222 secs
> start = Sys.time()
> newTest =otherTest[keys%in%unique(partition)]
> end = Sys.time()
> print(end - start)
Time difference of 0.205637 secs
因此,将右侧参数中的重复项删除到%in%也可以解决问题。
所以考虑到这个新信息,问题仍然存在:为什么这两个data.tables以不同方式处理重复值?
答案 0 :(得分:3)
当data.table
match
(%in%
由match
操作定义)和你的矢量大小时,你会专注于library(microbenchmark)
set.seed(1492)
# sprintf to keep the same type and nchar of your values
keys_big <- sprintf("%014d", sample(5000, 4000000, replace=TRUE))
keys_small <- sprintf("%014d", sample(5000, 30000, replace=TRUE))
partition <- sample(keys_big, 250)
microbenchmark(
"big"=keys_big %in% partition,
"small"=keys_small %in% partition
)
## Unit: milliseconds
## expr min lq mean median uq max neval cld
## big 167.544213 184.222290 205.588121 195.137671 205.043641 376.422571 100 b
## small 1.129849 1.269537 1.450186 1.360829 1.506126 2.848666 100 a
应该关注。一个可重复的例子:
match
来自文档:
%chin%
返回其第二个参数(第一个)匹配位置的向量。
这固有地意味着它将依赖于向量的大小以及如何接近顶部&#34;找到(或找不到)匹配。
然而,您可以使用data.table
中的library(data.table)
microbenchmark(
"big"=keys_big %chin% partition,
"small"=keys_small %chin% partition
)
## Unit: microseconds
## expr min lq mean median uq max neval cld
## big 36312.570 40744.2355 47884.3085 44814.3610 48790.988 119651.803 100 b
## small 241.045 264.8095 336.1641 283.9305 324.031 1207.864 100 a
加速整个事情,因为您使用了字符向量:
fastmatch
你也可以使用data.table
包(但你已经加载了library(fastmatch)
# gives us similar syntax & functionality as %in% and %chin%
"%fmin%" <- function(x, table) fmatch(x, table, nomatch = 0) > 0
microbenchmark(
"big"=keys_big %fmin% partition,
"small"=keys_small %fmin% partition
)
## Unit: microseconds
## expr min lq mean median uq max neval cld
## big 75189.818 79447.5130 82508.8968 81460.6745 84012.374 124988.567 100 b
## small 443.014 471.7925 525.2719 498.0755 559.947 850.353 100 a
并且正在处理字符向量,所以6/1 | 0.5 * 12):
library(ggplot2)
library(gridExtra)
microbenchmark(
"small_in"=keys_small %in% partition,
"small_ch"=keys_small %chin% partition,
"small_fm"=keys_small %fmin% partition,
unit="us"
) -> small
microbenchmark(
"big_in"=keys_big %in% partition,
"big_ch"=keys_big %chin% partition,
"big_fm"=keys_big %fmin% partition,
unit="us"
) -> big
grid.arrange(autoplot(small), autoplot(big))
无论如何,任一矢量的大小最终将决定操作的速度/速度。但后两种选择至少可以让你获得更快的结果。这里是小型和大型载体的所有三者之间的比较:
data.table
更新
基于OP评论,这是使用和不使用dat_big <- data.table(keys=keys_big)
microbenchmark(
"dt" = dat_big[keys %in% partition],
"not_dt" = dat_big$keys %in% partition,
"dt_ch" = dat_big[keys %chin% partition],
"not_dt_ch" = dat_big$keys %chin% partition,
"dt_fm" = dat_big[keys %fmin% partition],
"not_dt_fm" = dat_big$keys %fmin% partition
)
## Unit: milliseconds
## expr min lq mean median uq max neval cld
## dt 11.74225 13.79678 15.90132 14.60797 15.66586 129.2547 100 a
## not_dt 160.61295 174.55960 197.98885 184.51628 194.66653 305.9615 100 f
## dt_ch 46.98662 53.96668 66.40719 58.13418 63.28052 201.3181 100 c
## not_dt_ch 37.83380 42.22255 50.53423 45.42392 49.01761 147.5198 100 b
## dt_fm 78.63839 92.55691 127.33819 102.07481 174.38285 374.0968 100 e
## not_dt_fm 67.96827 77.14590 99.94541 88.75399 95.47591 205.1925 100 d
子集进行思考的另一个基准:
x(y?)z
答案 1 :(得分:1)
如果您的数据涉及速度较慢,那么您可以考虑在每次加载后设置数据密钥,以使用聚簇键和索引继续进行任何查询。
由于精确和现代的排序算法的实现,设置键相对便宜。
library(data.table)
library(microbenchmark)
set.seed(1492)
keys_big <- sprintf("%014d", sample(5000, 4000000, replace=TRUE))
keys_small <- sprintf("%014d", sample(5000, 30000, replace=TRUE))
partition <- sample(keys_big, 250)
dat_big <- data.table(keys=keys_big, key = "keys")
microbenchmark(
"dt" = dat_big[keys %in% partition],
"not_dt" = dat_big$keys %in% partition,
"dt_ch" = dat_big[keys %chin% partition],
"not_dt_ch" = dat_big$keys %chin% partition,
"dt_key" = dat_big[partition]
)
# Unit: milliseconds
# expr min lq mean median uq max neval
# dt 5.810935 6.100602 6.830618 6.493006 6.825171 20.47223 100
# not_dt 237.730092 246.318824 266.484226 257.507188 272.433109 461.17918 100
# dt_ch 62.822514 66.169728 71.522330 69.865380 75.056333 103.45799 100
# not_dt_ch 51.292627 52.551307 58.236860 54.920637 59.762000 215.65466 100
# dt_key 5.941748 6.210253 7.251318 6.568678 7.004453 23.45361 100
设置密钥的时间
dat_big <- data.table(keys=keys_big)
system.time(setkey(dat_big, keys))
# user system elapsed
# 0.230 0.008 0.238
这是最近的1.9.5。
答案 2 :(得分:0)
我希望操作时间与thing
和otherThing
的大小成正比,而我在输出中看不到它们的大小,所以很难确切知道会发生什么。
但是,otherthing$keys
中的唯一值比thing$keys
中的要多得多(124.28倍),所以您不希望操作需要更长的时间吗?它必须检查表中的值以查找它找到的每个唯一值(并且您似乎知道这一点,因为您打印了值)。
注意时间比例约为60.8。