metafor包的元分析:rma和rma.mv之间存在奇怪的差异

时间:2015-06-04 16:48:18

标签: r

我正在使用metafor包进行元回归。我的简单试验估计是:

m1<-rma(yi=COEFF, sei=STDERR, mods = ~ MT_TIMESERIES + MT_BIVARIATE, method="REML", data=y)

接下来,我使用rma.mv()估计相同的模型,并使用随机项RID,这是识别每个单一观察的因素(没有观察群集):

m2<-rma.mv(yi=COEFF, V=STDERR^2, random= ~ 1|RID, mods = ~ MT_TIMESERIES + MT_BIVARIATE, method="REML", data=y)

估计m1和m2实际上应该产生相同的结果(这个想法得到包裹作者在http://www.metafor-project.org/doku.php/tips:rma.uni_vs_rma.mv上的注释支持)。

但事实上,他们没有:

> summary(m1)

Mixed-Effects Model (k = 886; tau^2 estimator: REML)

logLik    deviance         AIC         BIC        AICc  
-4847.7988   9695.5976   9703.5976   9722.7309   9703.6431  

tau^2 (estimated amount of residual heterogeneity):     0.0000 (SE = 0.0000)
tau (square root of estimated tau^2 value):             0.0007
I^2 (residual heterogeneity / unaccounted variability): 1.21%
H^2 (unaccounted variability / sampling variability):   1.01
R^2 (amount of heterogeneity accounted for):            87.37%

Test for Residual Heterogeneity: 
QE(df = 883) = 9083.3858, p-val < .0001

Test of Moderators (coefficient(s) 2,3): 
QM(df = 2) = 104.7561, p-val < .0001

Model Results:

               estimate      se     zval    pval    ci.lb    ci.ub     
intrcpt         -0.0076  0.0009  -8.6343  <.0001  -0.0093  -0.0059  ***
MT_TIMESERIES    0.0004  0.0010   0.3669  0.7137  -0.0016   0.0023     
MT_BIVARIATE     0.0062  0.0010   6.4595  <.0001   0.0043   0.0081  ***

> summary(m2)

Multivariate Meta-Analysis Model (k = 886; method: REML)

logLik    Deviance         AIC         BIC        AICc  
-2948.3789   5896.7578   5904.7578   5923.8911   5904.8034  

Variance Components: 

            estim    sqrt  nlvls  fixed  factor
sigma^2    3.2560  1.8044    886     no     RID

Test for Residual Heterogeneity: 
QE(df = 883) = 9083.3858, p-val < .0001

Test of Moderators (coefficient(s) 2,3): 
QM(df = 2) = 13.7838, p-val = 0.0010

Model Results:

               estimate      se     zval    pval    ci.lb    ci.ub     
intrcpt         -0.5362  0.1262  -4.2475  <.0001  -0.7836  -0.2888  ***
MT_TIMESERIES   -0.5021  0.1557  -3.2237  0.0013  -0.8073  -0.1968   **
MT_BIVARIATE    -0.5016  0.1949  -2.5742  0.0100  -0.8835  -0.1197    *

有谁知道为什么会这样?

非常感谢提前!

祝你好运

勒夫

0 个答案:

没有答案