由于
请注意,原始csv文件中的所有列都不具有浮点类型。我只需要将float32设置为float列的默认值。
答案 0 :(得分:9)
尝试:
import numpy as np
import pandas as pd
# Sample 100 rows of data to determine dtypes.
df_test = pd.read_csv(filename, nrows=100)
float_cols = [c for c in df_test if df_test[c].dtype == "float64"]
float32_cols = {c: np.float32 for c in float_cols}
df = pd.read_csv(filename, engine='c', dtype=float32_cols)
首先读取100行数据的样本(根据需要进行修改)以确定每列的类型。
它创建了一个列为'float64'的列,然后使用字典理解来创建一个字典,其中这些列作为键,'np.float32'作为每个键的值。
最后,它使用'c'引擎(将dtypes分配给列所需)读取整个文件,然后将float32_cols字典作为参数传递给dtype。
df = pd.read_csv(filename, nrows=100)
>>> df
int_col float1 string_col float2
0 1 1.2 a 2.2
1 2 1.3 b 3.3
2 3 1.4 c 4.4
>>> df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3 entries, 0 to 2
Data columns (total 4 columns):
int_col 3 non-null int64
float1 3 non-null float64
string_col 3 non-null object
float2 3 non-null float64
dtypes: float64(2), int64(1), object(1)
df32 = pd.read_csv(filename, engine='c', dtype={c: np.float32 for c in float_cols})
>>> df32.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3 entries, 0 to 2
Data columns (total 4 columns):
int_col 3 non-null int64
float1 3 non-null float32
string_col 3 non-null object
float2 3 non-null float32
dtypes: float32(2), int64(1), object(1)
答案 1 :(得分:0)
@Alexander的答案很好。有些列可能需要精确。如果是这样,您可能需要在列表理解中加入更多条件,以排除内置any
或all
方便的某些列:
float_cols = [c for c in df_test if all([df_test[c].dtype == "float64",
not df_test[c].name == 'Latitude', not df_test[c].name =='Longitude'])]
答案 2 :(得分:0)
如果您不在乎列顺序,那么还有df.select_dtypes
可以避免两次read_csv
:
import pandas as pd
df = pd.read_csv("file.csv")
df_float = df.select_dtypes(include=float).astype("float32")
df_not_float = df.select_dtypes(exclude=float)
df = df_float.join(df_not_float)
或者,如果您要将 all 个非字符串列(例如整数列)转换为float:
import pandas as pd
df = pd.read_csv("file.csv")
df_not_str = df.select_dtypes(exclude=object).astype("float32")
df_str = df.select_dtypes(include=object)
df = df_not_str.join(df_str)
答案 3 :(得分:0)
这是一种不依赖.join
或不需要两次读取文件的解决方案:
float64_cols = df.select_dtypes(include='float64').columns
mapper = {col_name: np.float32 for col_name in float64_cols}
df = df.astype(mapper)
或者作为单线踢球:
df = df.astype({c: np.float32 for c in df.select_dtypes(include='float64').columns})