我使用Weka来训练我的数据集,但我不知道我是否得到了一个好的结果。 有人能给我一些想法吗? 这是我的结果:
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances 2823 97.9188 %
Incorrectly Classified Instances 60 2.0812 %
Kappa statistic 0
Mean absolute error 0.0208
Root mean squared error 0.1443
Relative absolute error 50.6234 %
Root relative squared error 101.0568 %
Coverage of cases (0.95 level) 97.9188 %
Mean rel. region size (0.95 level) 50 %
Total Number of Instances 2883
Ignored Class Unknown Instances 119
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.020 0
1.000 1.000 0.979 1.000 0.989 0.000 0.500 0.940 1
Weighted Avg. 0.979 0.979 0.959 0.979 0.969 0.000 0.500 0.921
=== Confusion Matrix ===
a b <-- classified as
0 60 | a = 0
0 2823 | b = 1
答案 0 :(得分:-1)
使用了2个类,用b类标记所有实例正确分类,因此正确分类实例速率= 2823 /(2823 + 60)= 97.9188%,类1 TP值为1,但从未使用正确分类的类实例进行标记所以错误分类的实例率= 60 /(2823 + 60)= 2.0812%且0级TP值为0