我知道有人会通过将sklearn.svm.SVC
选项传递给构造函数来评估probability=True
的AUC,并让SVM预测概率,但我不确定如何评估{{1} AUC。有谁知道怎么做?
我想sklearn.svm.LinearSVC
使用LinearSVC
,因为SVC
似乎可以更快地训练具有多种属性的数据。
答案 0 :(得分:0)
答案 1 :(得分:0)
您可以使用CalibratedClassifierCV类来提取概率。这是一个example with code。
from sklearn.svm import LinearSVC
from sklearn.calibration import CalibratedClassifierCV
from sklearn import datasets
#Load iris dataset
iris = datasets.load_iris()
X = iris.data[:, :2] # Using only two features
y = iris.target #3 classes: 0, 1, 2
linear_svc = LinearSVC() #The base estimator
# This is the calibrated classifier which can give probabilistic classifier
calibrated_svc = CalibratedClassifierCV(linear_svc,
method='sigmoid', #sigmoid will use Platt's scaling. Refer to documentation for other methods.
cv=3)
calibrated_svc.fit(X, y)
# predict
prediction_data = [[2.3, 5],
[4, 7]]
predicted_probs = calibrated_svc.predict_proba(prediction_data) #important to use predict_proba
print predicted_probs