如何向量化以下python代码?

时间:2015-05-17 19:26:25

标签: python arrays performance numpy vectorization

我正在尝试使用Numpy和矢量化操作来使代码段运行得更快,但我没有成功找到解决方案。如果有人有想法......谢谢。

这是带循环的工作代码:

y = np.zeros(len(tab))
for i in range(len(tab)):
    s =  0
    for n in range(len(coef[0])):
        s += coef[0][n] * ((a + b * np.dot(tab[i], vectors[n])) ** d)
    y[i] = s

其中,

  • tab:numpy.array(N,M)
  • vectors:numpy.array(P,M)
  • coef:numpy.array(1,P)
  • a,b,c:常数(a = 0,如果它更容易)

2 个答案:

答案 0 :(得分:4)

您可以使用基于np.einsummatrix-multiplication with np.dot的方法,如下所示 -

# Calculate "((a + b * np.dot(tab[i], vectors[n])) ** d)" part
p1 = (a + b*np.einsum('ij,kj->ki',tab,vectors))**d

# Include "+= coef[0][n] *" part to get the final output
y_vectorized = np.dot(coef,p1)

运行时测试

数据集#1:

这是一个快速运行时测试,将原始循环方法与针对某些随机值的建议方法进行比较 -

In [168]: N = 50
     ...: M = 50
     ...: P = 50
     ...: 
     ...: tab = np.random.rand(N,M)
     ...: vectors = np.random.rand(P,M)
     ...: coef = np.random.rand(1,P)
     ...: 
     ...: a = 3.233
     ...: b = 0.4343
     ...: c = 2.0483
     ...: d = 3
     ...: 

In [169]: %timeit original_approach(tab,vectors,coef,a,b,c,d)
100 loops, best of 3: 4.18 ms per loop

In [170]: %timeit proposed_approach(tab,vectors,coef,a,b,c,d)
10000 loops, best of 3: 136 µs per loop

数据集#2:

每个NMP150,运行时间为 -

In [196]: %timeit original_approach(tab,vectors,coef,a,b,c,d)
10 loops, best of 3: 37.9 ms per loop

In [197]: %timeit proposed_approach(tab,vectors,coef,a,b,c,d)
1000 loops, best of 3: 1.91 ms per loop

答案 1 :(得分:0)

看起来很糟糕。但这是你需要的吗?

y = array([ sum( [coef[0][n] * ((a + b * np.dot(tab[i], vectors[n])) ** d) 
            for n in range(len(vectors[0]))] ) for i in range(len(tab)) ])