当我在纱线上执行火花流动应用时,我继续收到以下错误
为什么错误发生以及如何解决?任何建议都会有所帮助,谢谢〜
15/05/07 11:11:50 INFO dstream.StateDStream: Marking RDD 2364 for time 1430968310000 ms for checkpointing
15/05/07 11:11:50 INFO scheduler.JobScheduler: Added jobs for time 1430968310000 ms
15/05/07 11:11:50 INFO scheduler.JobGenerator: Checkpointing graph for time 1430968310000 ms
15/05/07 11:11:50 INFO streaming.DStreamGraph: Updating checkpoint data for time 1430968310000 ms
15/05/07 11:11:50 INFO streaming.DStreamGraph: Updated checkpoint data for time 1430968310000 ms
15/05/07 11:11:50 ERROR actor.OneForOneStrategy: org.apache.spark.streaming.StreamingContext
java.io.NotSerializableException: org.apache.spark.streaming.StreamingContext
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1184)
at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)
at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)
at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)
at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
火花流应用程序代码如下,我在spark-shell中执行
import kafka.cluster.Cluster
import kafka.serializer.StringDecoder
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Duration, StreamingContext}
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.StreamingContext._
val updateFunc = (values: Seq[Int], state: Option[Int]) => {
Some(0)
}
val ssc = new StreamingContext(sc,
new Duration(5000))
ssc.checkpoint(".")
val lines = KafkaUtils.createStream(ssc, "10.1.10.21:2181", "kafka_spark_streaming", Map("hello_test" -> 3))
val uuidDstream = lines.transform(rdd => rdd.map(_._2)).map(x => (x, 1)).updateStateByKey[Int](updateFunc)
uuidDstream.count().print()
ssc.start()
ssc.awaitTermination()
答案 0 :(得分:7)
val updateFunc
闭包中使用的对updateStateByKey
的引用将该实例的其余部分拉入闭包并使用StreamingContext。
两个选项:
@transient val ssc= ...
同样最好将dstream声明注释为@transient
。像这样:
case object TransformFunctions {
val updateFunc = ???
}