我一直在努力将分布拟合到我在R中的样本数据。我已经看过使用fitdist以及fitdistr函数,但我似乎遇到了两者的问题。
快速背景;我的代码输出应该是最合适的分布(从分发列表)到提供的数据,带参数。这需要在没有人工交互的情况下发生,因此比较图表不是一种选择。我想我可以将每个分布拟合到数据中,从卡方检验中绘制p值并找到具有最高p值的分布。我在样本数据的正态分布方面取得了一些成功,但是一旦我尝试拟合更复杂的东西(伽玛分布,如代码中所示),我就会遇到各种错误。我究竟做错了什么?
library(fitdistrplus)
require(MASS)
set.seed(1)
testData <- rnorm(1000)
distlist <- c("norm","unif","exp")
(z <- fitdist(testData,"gamma",start=list(rate=0.1),fix.arg=list(shape=4)))
我得到的错误示例如下:
[1]“在optim中出错(par = vstart,fn = fnobj,fix.arg = fix.arg,obs = 数据,:\ n'vmmin'中的初始值不是有限的\ n“attr(,”class“)
和
fitdist出错(testData,“gamma”,start = list(rate = 0.1),fix.arg = list(shape = 4)):函数mle无法估计参数, 错误代码100
我知道我可能错误地实现了fitdist函数,但我似乎无法找到可以适应我的代码目标的简单示例。有人可以帮忙吗?
答案 0 :(得分:4)
您正在寻找Kolmogorov-Smirnov测试。空假设是数据样本来自假设分布。
fitData <- function(data, fit="gamma", sample=0.5){
distrib = list()
numfit <- length(fit)
results = matrix(0, ncol=5, nrow=numfit)
for(i in 1:numfit){
if((fit[i] == "gamma") |
(fit[i] == "poisson") |
(fit[i] == "weibull") |
(fit[i] == "exponential") |
(fit[i] == "logistic") |
(fit[i] == "normal") |
(fit[i] == "geometric")
)
distrib[[i]] = fit[i]
else stop("Provide a valid distribution to fit data" )
}
# take a sample of dataset
n = round(length(data)*sample)
data = sample(data, size=n, replace=F)
for(i in 1:numfit) {
if(distrib[[i]] == "gamma") {
gf_shape = "gamma"
fd_g <- fitdistr(data, "gamma")
est_shape = fd_g$estimate[[1]]
est_rate = fd_g$estimate[[2]]
ks = ks.test(data, "pgamma", shape=est_shape, rate=est_rate)
# add to results
results[i,] = c(gf_shape, est_shape, est_rate, ks$statistic, ks$p.value)
}
else if(distrib[[i]] == "poisson"){
gf_shape = "poisson"
fd_p <- fitdistr(data, "poisson")
est_lambda = fd_p$estimate[[1]]
ks = ks.test(data, "ppois", lambda=est_lambda)
# add to results
results[i,] = c(gf_shape, est_lambda, "NA", ks$statistic, ks$p.value)
}
else if(distrib[[i]] == "weibull"){
gf_shape = "weibull"
fd_w <- fitdistr(data,densfun=dweibull,start=list(scale=1,shape=2))
est_shape = fd_w$estimate[[1]]
est_scale = fd_w$estimate[[2]]
ks = ks.test(data, "pweibull", shape=est_shape, scale=est_scale)
# add to results
results[i,] = c(gf_shape, est_shape, est_scale, ks$statistic, ks$p.value)
}
else if(distrib[[i]] == "normal"){
gf_shape = "normal"
fd_n <- fitdistr(data, "normal")
est_mean = fd_n$estimate[[1]]
est_sd = fd_n$estimate[[2]]
ks = ks.test(data, "pnorm", mean=est_mean, sd=est_sd)
# add to results
results[i,] = c(gf_shape, est_mean, est_sd, ks$statistic, ks$p.value)
}
else if(distrib[[i]] == "exponential"){
gf_shape = "exponential"
fd_e <- fitdistr(data, "exponential")
est_rate = fd_e$estimate[[1]]
ks = ks.test(data, "pexp", rate=est_rate)
# add to results
results[i,] = c(gf_shape, est_rate, "NA", ks$statistic, ks$p.value)
}
else if(distrib[[i]] == "logistic"){
gf_shape = "logistic"
fd_l <- fitdistr(data, "logistic")
est_location = fd_l$estimate[[1]]
est_scale = fd_l$estimate[[2]]
ks = ks.test(data, "plogis", location=est_location, scale=est_scale)
# add to results
results[i,] = c(gf_shape, est_location, est_scale, ks$statistic, ks$p.value)
}
}
results = rbind(c("distribution", "param1", "param2", "ks stat", "ks pvalue"), results)
#print(results)
return(results)
}
应用于您的示例:
library(MASS)
set.seed(1)
testData <- rnorm(1000)
res = fitData(testData, fit=c("logistic","normal","exponential","poisson"),
sample=1)
res
您不会拒绝正常的零假设。
参考:http://worldofpiggy.com/2014/02/25/automatic-distribution-fitting-r/
答案 1 :(得分:1)
我认为错误主要是因为您的数据。如错误消息中所示,创建NaN
以便该函数似乎无法获得分数(通过区分密度函数)。 [密度函数的范围是非负的,不是吗?]
Method of moments代替最大似然估计,并且尽管发出警告,它仍会生成参数估计值。
library(fitdistrplus)
require(MASS)
set.seed(1)
testData <- rnorm(1000)
fitdist(testData, "gamma", method = "mme", start = list(shape = 0.1, rate = 0.1))
Fitting of the distribution ' gamma ' by matching moments
Parameters:
estimate
shape 0.0001268054
rate -0.0108863200
Warning message:
In dgamma(c(-0.626453810742332, 0.183643324222082, -0.835628612410047, :
NaNs produced