我有两个任意人A和B之间的对话记录。
c1 <- "Person A: blabla...something Person B: blabla something else Person A: OK blabla"
c2 <- "Person A: again blabla Person B: blabla something else Person A: thanks blabla"
数据框如下所示:
df <- data.frame(id = rbind(123, 345), conversation = rbind(c1, c2))
df
id conversation
c1 123 Person A: blabla...something Person B: blabla something else Person A: OK blabla
c2 345 Person A: again blabla Person B: blabla something else Person A: thanks blabla
现在我想只提取人A的一部分并将其放在数据框中。结果应该是:
id person_A
1 123 blabla...something OK blabla
2 345 again blabla thanks blabla
答案 0 :(得分:4)
我很高兴以某种方式解决这类问题,让您可以访问所有数据(包括人员B的话语)。对于这种列拆分,我喜欢 tidyr 的extract
。我过去常常使用do.call(rbind, strsplit()))
方法,但我喜欢extract
方法的干净程度。
c1 <- "Person A: blabla...something Person B: blabla something else Person A: OK blabla"
c2 <- "Person A: again blabla Person B: blabla something else Person A: thanks blabla"
c3 <- "Person A: again blabla Person B: blabla something else"
df <- data.frame(id = rbind(123, 345, 567), conversation = rbind(c1, c2, c3))
if (!require("pacman")) install.packages("pacman")
pacman::p_load(dplyr, tidyr)
conv <- strsplit(as.character(df[["conversation"]]), "\\s+(?=Person\\s)", perl=TRUE)
df2 <- df[rep(1:nrow(df), sapply(conv, length)), ,drop=FALSE]
rownames(df2) <- NULL
df2[["conversation"]] <- unlist(conv)
df2 %>%
extract(conversation, c("Person", "Conversation"), "([^:]+):\\s+(.+)")
## id Person Conversation
## 1 123 Person A blabla...something
## 2 123 Person B blabla something else
## 3 123 Person A OK blabla
## 4 345 Person A again blabla
## 5 345 Person B blabla something else
## 6 345 Person A thanks blabla
## 7 567 Person A again blabla
## 8 567 Person B blabla something else
df2 %>%
extract(conversation, c("Person", "Conversation"), "([^:]+):\\s+(.+)") %>%
filter(Person == "Person A")
## id Person Conversation
## 1 123 Person A blabla...something
## 2 123 Person A OK blabla
## 3 345 Person A again blabla
## 4 345 Person A thanks blabla
## 5 567 Person A again blabla
或者在显示所需的输出时折叠它们:
df2 %>%
extract(conversation, c("Person", "Conversation"), "([^:]+):\\s+(.+)") %>%
filter(Person == "Person A") %>%
group_by(id) %>%
select(-Person) %>%
summarise(Person_A =paste(Conversation, collapse=" "))
## id Person_A
## 1 123 blabla...something OK blabla
## 2 345 again blabla thanks blabla
## 3 567 again blabla
编辑:实际上我怀疑你的数据有像#34; john Smith&#34;与#34;人A&#34;。如果是这种情况,这个初始正则表达式拆分将捕获使用大写后跟冒号的名字和姓氏:
c1 <- "Greg Smith: blabla...something Sue Williams: blabla something else Greg Smith: OK blabla"
c2 <- "Greg Smith: again blabla Sue Williams: blabla something else Greg Smith: thanks blabla"
c3 <- "Greg Smith: again blabla Sue Williams: blabla something else"
df <- data.frame(id = rbind(123, 345, 567), conversation = rbind(c1, c2, c3))r
conv <- strsplit(as.character(df[["conversation"]]), "\\s+(?=([A-Z][a-z]+\\s+[A-Z][a-z]+:))", perl=TRUE)
df2 <- df[rep(1:nrow(df), sapply(conv, length)), ,drop=FALSE]
rownames(df2) <- NULL
df2[["conversation"]] <- unlist(conv)
df2 %>%
extract(conversation, c("Person", "Conversation"), "([^:]+):\\s+(.+)")
## id Person Conversation
## 1 123 Greg Smith blabla...something
## 2 123 Sue Williams blabla something else
## 3 123 Greg Smith OK blabla
## 4 345 Greg Smith again blabla
## 5 345 Sue Williams blabla something else
## 6 345 Greg Smith thanks blabla
## 7 567 Greg Smith again blabla
## 8 567 Sue Williams blabla something else
答案 1 :(得分:2)
使用stringr
包
首先我们使用&#34来分割字符串;人物A:&#34;作为分隔符
library(stringr)
conv.split <- str_split(df$conversation, "Person A: ")
这将为我们提供由A开始的所有对话,并附上(可选)答案B
我们现在删除B&B的答案
conv.split <- lapply(conv.split, function(x){str_split(x, "Person B:.*")})
最后我们将每个元素取消列表并将它们一起折叠成一个字符串
sapply(conv.split, function(x){x <- unlist(x); paste(x, collapse = "")})
结果:
[1] "blabla...something OK blabla" "again blabla thanks blabla"
也适用于B开始对话的情况,如果两个人中只有一人说话,也可以进行长时间的对话。
答案 2 :(得分:1)
使用基础R的data.table and
gsub`:
require(data.table)
setDT(df)[, Person_A := gsub(".*Person A:[ ]*(.*)[ ]*Person B.*:[ ]*(.*)$",
"\\1\\2", conversation)][, conversation := NULL]
df
# id Person_A
# 1: 123 blabla...something OK blabla
# 2: 345 again blabla thanks blabla
答案 3 :(得分:0)
它可能不适用于所有情况。尤其是会话从Person B
开始。如果是这样,请告诉我。其他尝试
df$person_A <- gsub("Person B.*:|Person A:", "", df$conversation)
df <- data.frame(df$id, df$person_A)
答案 4 :(得分:0)
这是我的尝试,我还添加了由人B开始的第二次对话以及由人B结束的对话,以便也涵盖这些情况:
c1 <- "Person A: blabla...something Person B: blabla something else Person A: OK blabla"
c2 <- "Person A: again blabla Person B: blabla something else Person A: thanks blabla"
c3 <- "Person A: again blabla Person B: blabla something else"
df <- data.frame(id = rbind(123, 345, 567), conversation = rbind(c1, c2, c3))
df$PersonA <- gsub("(Person A: |Person B: .+? (?<= Person A: )|Person B: .+?\\Z)", "", df$conversation, perl = TRUE)
df$PersonA
我正在使用gsub
删除:
\Z
我使用了perl = TRUE
,因为生命太短暂,不能使用后视镜...呃......后视操作员。