我正在尝试从照片中删除灰色背景并将其替换为白色背景
到目前为止,我有这段代码:
[HttpPost]
[AllowAnonymous]
[ValidateAntiForgeryToken]
public async Task<ActionResult> Register(RegisterViewModel model)
{
if (ModelState.IsValid)
{
var user = new ApplicationUser { UserName = model.Email, Email = model.Email };
var result = await UserManager.CreateAsync(user, model.Password);
if (result.Succeeded)
{
result = UserManager.AddToRole(user.Id, model.Role.ToString());
await SignInManager.SignInAsync(user, isPersistent: false, rememberBrowser: false);
if (model.Role.ToString() == "Provider")
{
return RedirectToAction("ProviderPostRegistration", "Account");
}
else if (model.Role.ToString() == "Receiver")
{
return RedirectToAction("ReceiverPostRegistration", "Account");
}
}
AddErrors(result);
}
// If we got this far, something failed, redisplay form
return View(model);
}
问题是图像现在有黑色背景,因为我掩盖了灰色。如何用白色像素替换空像素?
答案 0 :(得分:6)
答案 1 :(得分:2)
我真的建议你坚持使用OpenCV,它经过了很好的优化。诀窍是反转蒙版并将其应用到某些背景,你将获得蒙面图像和蒙面背景,然后将两者结合起来。 image1是用原始蒙版掩盖的图像,image2是用反转蒙版掩盖的背景图像,image3是组合图像。 重要。 image1,image2和image3必须具有相同的大小和类型。掩模必须是灰度的。
import cv2
import numpy as np
# opencv loads the image in BGR, convert it to RGB
img = cv2.cvtColor(cv2.imread('E:\\FOTOS\\opencv\\zAJLd.jpg'),
cv2.COLOR_BGR2RGB)
lower_white = np.array([220, 220, 220], dtype=np.uint8)
upper_white = np.array([255, 255, 255], dtype=np.uint8)
mask = cv2.inRange(img, lower_white, upper_white) # could also use threshold
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))) # "erase" the small white points in the resulting mask
mask = cv2.bitwise_not(mask) # invert mask
# load background (could be an image too)
bk = np.full(img.shape, 255, dtype=np.uint8) # white bk
# get masked foreground
fg_masked = cv2.bitwise_and(img, img, mask=mask)
# get masked background, mask must be inverted
mask = cv2.bitwise_not(mask)
bk_masked = cv2.bitwise_and(bk, bk, mask=mask)
# combine masked foreground and masked background
final = cv2.bitwise_or(fg_masked, bk_masked)
mask = cv2.bitwise_not(mask) # revert mask to original
答案 2 :(得分:2)
首先,您需要获得背景信息。必须使用蒙版图像从原始图像中减去此值。然后将黑色背景更改为白色(或任何颜色)。然后回来添加面具的图像。 看这里OpenCV grabcut() background color and Contour in Python
答案 3 :(得分:1)
首先转换为灰色,然后使用cv2.threshold进行阈值处理,然后使用numpy masking ...
ret, thresh = cv2.threshold(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), 220, 255, cv2.THRESH_BINARY)
img[thresh == 255] = 255
如果需要黑色背景,请将RHS设置为零而不是255
答案 4 :(得分:0)
我会使用
而不是使用bitwise_notresized.setTo([255, 255, 255], mask)
在此之前,我还会侵蚀和扩张面具,以摆脱面具中您想要保留的图像的规格。 http://docs.opencv.org/doc/tutorials/imgproc/erosion_dilatation/erosion_dilatation.html