将rgb图像转换为灰度图像的两个函数:
function rgb2gray_loop{T<:FloatingPoint}(A::Array{T,3})
r,c = size(A)
gray = similar(A,r,c)
for i = 1:r
for j = 1:c
@inbounds gray[i,j] = 0.299*A[i,j,1] + 0.587*A[i,j,2] + 0.114 *A[i,j,3]
end
end
return gray
end
和
function rgb2gray_vec{T<:FloatingPoint}(A::Array{T,3})
gray = similar(A,size(A)[1:2]...)
gray = 0.299*A[:,:,1] + 0.587*A[:,:,2] + 0.114 *A[:,:,3]
return gray
end
第一个使用循环,而第二个使用矢量化。
对它们进行基准测试时(使用Benchmark软件包)我得到了不同大小的输入图像的以下结果(f1
是循环版本,f2
矢量化版本):
A = rand(50,50,3)
:
| Row | Function | Average | Relative | Replications |
|-----|----------|-------------|----------|--------------|
| 1 | "f1" | 3.23746e-5 | 1.0 | 1000 |
| 2 | "f2" | 0.000160214 | 4.94875 | 1000 |
A = rand(500,500,3)
:
| Row | Function | Average | Relative | Replications |
|-----|----------|------------|----------|--------------|
| 1 | "f1" | 0.00783007 | 1.0 | 100 |
| 2 | "f2" | 0.0153099 | 1.95527 | 100 |
A = rand(5000,5000,3)
:
| Row | Function | Average | Relative | Replications |
|-----|----------|----------|----------|--------------|
| 1 | "f1" | 1.60534 | 2.56553 | 10 |
| 2 | "f2" | 0.625734 | 1.0 | 10 |
我期望一个函数比另一个函数更快(因为inbounds宏可能是f1)。
但我无法解释为什么矢量化版本对于较大的图像变得更快。 那是为什么?
答案 0 :(得分:9)
结果的答案是Julia中的多维数组以列主顺序存储。请参阅Julias Memory Order。
修复了循环版本,关于列主要顺序(交换的内部和外部循环变量):
function rgb2gray_loop{T<:FloatingPoint}(A::Array{T,3})
r,c = size(A)
gray = similar(A,r,c)
for j = 1:c
for i = 1:r
@inbounds gray[i,j] = 0.299*A[i,j,1] + 0.587*A[i,j,2] + 0.114 *A[i,j,3]
end
end
return gray
end
A = rand(5000,5000,3)
的新结果:
| Row | Function | Average | Relative | Replications |
|-----|----------|----------|----------|--------------|
| 1 | "f1" | 0.107275 | 1.0 | 10 |
| 2 | "f2" | 0.646872 | 6.03004 | 10 |
较小阵列的结果:
A = rand(500,500,3)
:
| Row | Function | Average | Relative | Replications |
|-----|----------|------------|----------|--------------|
| 1 | "f1" | 0.00236405 | 1.0 | 100 |
| 2 | "f2" | 0.0207249 | 8.76671 | 100 |
A = rand(50,50,3)
:
| Row | Function | Average | Relative | Replications |
|-----|----------|-------------|----------|--------------|
| 1 | "f1" | 4.29321e-5 | 1.0 | 1000 |
| 2 | "f2" | 0.000224518 | 5.22961 | 1000 |
答案 1 :(得分:1)
只是猜测因为我不认识Julia-Lang:
我认为向量化表单中的语句gray = ...
会创建一个新数组,其中存储所有计算值,同时废弃旧数组。在f1
中,值会被覆盖,因此不需要新的内存分配。内存分配非常昂贵,因此具有就地覆盖的循环版本对于较低的数字更快。
但内存分配通常是一个静态开销(分配两倍,并不需要两倍的时间),矢量化版本计算速度更快(可能并行?)所以如果数字变得足够大,则计算速度越快比内存分配更有区别。
答案 2 :(得分:0)
我无法重现您的结果。
我得到的数字是:
In [5]:
@time rgb2gray_loop(rand(50,50,3));
@time rgb2gray_vec(rand(50,50,3));
elapsed time: 7.591e-5 seconds (80344 bytes allocated)
elapsed time: 0.000108785 seconds (241192 bytes allocated)
In [6]:
@time rgb2gray_loop(rand(500,500,3));
@time rgb2gray_vec(rand(500,500,3));
elapsed time: 0.021647914 seconds (8000344 bytes allocated)
elapsed time: 0.012364489 seconds (24001192 bytes allocated)
In [7]:
@time rgb2gray_loop(rand(5000,5000,3));
@time rgb2gray_vec(rand(5000,5000,3));
elapsed time: 0.902367223 seconds (800000440 bytes allocated)
elapsed time: 1.237281103 seconds (2400001592 bytes allocated, 7.61% gc time)
正如预期的那样,对于大型输入,循环版本更快。还要注意矢量化版本如何分配三倍的内存。
我还想指出语句gray = similar(A,size(A)[1:2]...)
是多余的,可以省略。
如果没有这种不必要的分配,最大问题的结果是:
@time rgb2gray_loop(rand(5000,5000,3));
@time rgb2gray_vec(rand(5000,5000,3));
elapsed time: 0.953746863 seconds (800000488 bytes allocated, 3.06% gc time)
elapsed time: 1.203013639 seconds (2200001200 bytes allocated, 7.28% gc time)
因此内存使用量下降,但速度没有明显改善。