在Python中获得N或更多相差最小的坐标

时间:2010-06-01 22:39:42

标签: python database numpy scipy

假设我有一个坐标列表:

data = [
    [(10, 20), (100, 120), (0, 5), (50, 60)],
    [(13, 20), (300, 400), (100, 120), (51, 62)]
]

我想把所有出现在数据中每个列表中的元组,或任何与除了它自己的之外的列表中的所有元组相差3或更少的元组。我怎样才能在Python中高效地完成这项工作?

对于上面的例子,结果应该是:

[[(100, 120), # since it occurs in both lists
  (10, 20), (13, 20), # since they differ by only 3 
  (50, 60), (51, 60)]]
不包括

(0,5)和(300,400),因为它们不会出现在两个列表中,并且与列表中的元素不同于3或更少。

如何计算?谢谢。

3 个答案:

答案 0 :(得分:1)

这种天真的实现将很慢:O(n ^ 2),针对每个其他节点测试每个节点。使用树来加速它。

此实现使用简单的四叉树来提高搜索效率。这并没有任何尝试平衡树,所以一个非常有序的点列表可能会使它非常低效。对于很多用途,简单地改变列表可能会使它足够好;只是一定不要传递很多按坐标排序的项目,因为这会把它减少到一个链表。

这里的优化很简单:如果我们在某个点的3个单位的欧几里德距离内寻找项目,并且我们知道子树中的所有项目都在右边至少3个单位,那么就没有任何一点在那个区域可能不到3个单位。

此代码属于公共领域。尽量不要把它作为家庭作业。

#!/usr/bin/python
import math

def euclidean_distance(pos1, pos2):
    x = math.pow(pos1[0] - pos2[0], 2)
    y = math.pow(pos1[1] - pos2[1], 2)
    return math.sqrt(x + y)

class QuadTreeNode(object):
    def __init__(self, pos):
        """
        Create a QuadTreeNode at the specified position.  pos must be an (x, y) tuple.
        Children are classified by quadrant. 
        """
        # Children of this node are ordered TL, TR, BL, BL (origin top-left).
        self.children = [None, None, None, None]
        self.pos = pos

    def classify_node(self, pos):
        """
        Return which entry in children can contain pos.  If pos is equal to this
        node, return None.

        >>> node = QuadTreeNode((10, 20))
        >>> node.classify_node((10, 20)) == None
        True
        >>> node.classify_node((2, 2))
        0
        >>> node.classify_node((50, 2))
        1
        >>> node.classify_node((2, 50))
        2
        >>> node.classify_node((50, 50))
        3

        X boundary condition:
        >>> node.classify_node((10, 2))
        0
        >>> node.classify_node((10, 50))
        2

        Y boundary conditoin:
        >>> node.classify_node((2, 20))
        0
        >>> node.classify_node((50, 20))
        1
        """
        if pos == self.pos:
            return None
        if pos[0] <= self.pos[0]:       # Left
            if pos[1] <= self.pos[1]:   # Top-left
                return 0
            else:                       # Bottom-left
                return 2
        else:                           # Right
            if pos[1] <= self.pos[1]:   # Top-right
                return 1
            else:                       # Bottom-right
                return 3
        assert False, "not reached"

    def add_node(self, node):
        """
        Add a specified point under this node.
        """
        type = self.classify_node(node.pos)
        if type is None:
            # node is equal to self, so this is a duplicate node.  Ignore it.
            return

        if self.children[type] is None:
            self.children[type] = node
        else:
            # We already have a node there; recurse and add it to the child.
            self.children[type].add_node(node)

    @staticmethod
    def CreateQuadTree(data):
        """
        Create a quad tree from the specified list of points.
        """
        root = QuadTreeNode(data[0])
        for val in data[1:]:
            node = QuadTreeNode(val)
            root.add_node(node)

        return root

    def distance_from_pos(self, pos):
        return euclidean_distance(self.pos, pos)

    def __str__(self): return str(self.pos)

    def find_point_within_range(self, pos, distance):
        """
        If a point exists within the specified Euclidean distance of the specified
        point, return it.  Otherwise, return None.
        """
        if self.distance_from_pos(pos) <= distance:
            return self

        for axis in range(0, 4):
            if self.children[axis] is None:
                # We don't have a node on this axis.
                continue

            # If moving forward on this axis would permanently put us out of range of
            # the point, short circuit the search on that axis.
            if axis in (0, 2): # axis moves left on X
                if self.pos[0] < pos[0] - distance:
                    continue
            if axis in (1, 3): # axis moves right on X
                if self.pos[0] > pos[0] + distance:
                    continue
            if axis in (0, 1): # axis moves up on Y
                if self.pos[1] < pos[1] - distance:
                    continue
            if axis in (2, 3): # axis moves down on Y
                if self.pos[1] > pos[1] + distance:
                    continue
            node = self.children[axis].find_point_within_range(pos, distance)
            if node is not None:
                return node
        return None

    @staticmethod
    def find_point_in_range_for_all_trees(point, trees, distance):
        """
        If all QuadTreeNodes in trees contain a a point within the specified distance
        of point, return True,  Otherwise, return False.
        """
        for tree in trees:
            if tree.find_point_within_range(point, distance) is None:
                return False
        return True

def test_naive(data, distance):
    def find_point_in_list(iter, point):
        for i in iter:
            if euclidean_distance(i, point) <= distance:
                return True
        return False

    def find_point_in_all_lists(point):
        for d in data:
            if not find_point_in_list(d, point):
                return False
        return True

    results = []
    for d in data:
        for point in d:
            if find_point_in_all_lists(point):
                results.append(point)
    return set(results)

def test_tree(data, distance):
    trees = [QuadTreeNode.CreateQuadTree(d) for d in data]
    results = []
    for d in data:
        for point in d:
            if QuadTreeNode.find_point_in_range_for_all_trees(point, trees, 3):
                results.append(point)
    return set(results)

def test():
    sample_data = [
            [(10, 20), (100, 120), (0, 5), (50, 60)],
            [(13, 20), (300, 400), (100, 120), (51, 62)]
    ]
    result1 = test_naive(sample_data, 3)
    result2 = test_tree(sample_data, 3)
    print result1
    assert result1 == result2

    # Loosely validate the tree algorithm against a lot of sample data, and compare
    # performance while we're at it:
    def random_data():
        import random
        return [(random.randint(0,1000), random.randint(0,1000)) for d in range(0,500)]
    data = [random_data() for x in range(0,10)]

    print "Searching (naive)..."
    result1 = test_naive(data, 3)

    print "Searching (tree)..."
    result2 = test_tree(data, 3)
    assert result1 == result2


if __name__ == "__main__":
    test()

    import doctest
    doctest.testmod()

答案 1 :(得分:0)

我希望这会让你开始。任何改进都将不胜感激。

出现在所有列表中都很简单 - 只需获取列表中所有元素的交集。

>>> data = [
...     [(10, 20), (100, 120), (0, 5), (50, 60)],
...     [(13, 20), (300, 400), (100, 120), (51, 62)]
... ]
>>> dataset = [set(d) for d in data]
>>> dataset[0].intersection(*dataset[1:])
set([(100, 120)])
除了同一列表中的元组之外,

“3或更小的差异”在我看来是图形/ 2d空间问题。没有简单的算法,没有多项式算法,如果你的数据集不是很大,你可以迭代它们并对不在同一列表中的关闭点进行分组。

答案 2 :(得分:0)

@ barrycarter的直觉很有意思:减少比较次数(通过“比较”两个点,我们的意思是检查它们的距离是否为<= 3),将“2D平面”虚拟切片为合适的“细胞”,这样每个点只需要与相邻“单元格”中的点进行比较。如果您的数据集很大,这可能真的有帮助(如果需要将每个点与基本上所有其他点进行比较,那就是一个强力解决方案)。

这是一个Python实现的想法(因为barry的代码草图似乎是Perl或其他东西),旨在清晰而不是速度......:

import collections
import math


def cellof(point):
    x, y = point
    return x//3, y//3

def distance(p1, p2):
    return math.hypot(p1[0]-p2[0], p1[1]-p2[1])

def process(data):
    cells = collections.defaultdict(list)
    for i, points in enumerate(data):
        for p in points:
            cx, cy = cellof(p)
            cells[cx, cy].append((i, p))
    res = set()
    for c, alist in cells.items():
        for i, p in alist:
                for cx in range(c[0]-1, c[0]+2):
                    for cy in range(c[1]-1, c[1]+2):
                        otherc = cells[cx, cy]
                        for otheri, otherp in otherc:
                            if i == otheri: continue
                            dst = distance(p, otherp)
                            if dst <= 3: res.add(p)
    return sorted(res)

if __name__ == '__main__':  # just an example

    data = [
        [(10, 20), (100, 120), (0, 5), (50, 60)],
        [(13, 20), (300, 400), (100, 120), (51, 62)]
    ]
    print process(data)

作为脚本运行时,会生成输出

[(10, 20), (13, 20), (50, 60), (51, 62), (100, 120)]

当然,要确定这是否值得,或者更简单的蛮力方法确实更好,唯一可行的方法是让您在真实数据上运行两种解决方案的基准 - 您的程序在现实生活中实际需要处理的各种数据集。根据您拥有的列表数量,每个列表的数量,间隔距离,性能差异很大,并且测量比猜测更好! - )