找到接口org.apache.hadoop.mapreduce.TaskAttemptContext

时间:2015-04-04 15:37:43

标签: java hadoop mapreduce avro

到目前为止,Haven没有找到解决我特定问题的方法。它至少不起作用。它让我很疯狂。这个特殊的组合似乎在谷歌空间中没有太多。我的错误发生在作业根据我的意思进入映射器时。此作业的输入是avro架构输出,虽然我尝试了未压缩,但是使用deflate进行压缩。

Avro:1.7.7 Hadoop:2.4.1

我收到此错误,我不确定原因。这是我的工作,mapper和reduce。当映射器进入时会发生错误。

示例未压缩的Avro输入文件(StockReport.SCHEMA以这种方式定义)

{"day": 3, "month": 2, "year": 1986, "stocks": [{"symbol": "AAME", "timestamp": 507833213000, "dividend": 10.59}]}

工作

@Override
public int run(String[] strings) throws Exception {
    Job job = Job.getInstance();
    job.setJobName("GenerateGraphsJob");
    job.setJarByClass(GenerateGraphsJob.class);

    configureJob(job);

    int resultCode = job.waitForCompletion(true) ? 0 : 1;

    return resultCode;
}

private void configureJob(Job job) throws IOException {
    try {
        Configuration config = getConf();
        Path inputPath = ConfigHelper.getChartInputPath(config);
        Path outputPath = ConfigHelper.getChartOutputPath(config);

        job.setInputFormatClass(AvroKeyInputFormat.class);
        AvroKeyInputFormat.addInputPath(job, inputPath);
        AvroJob.setInputKeySchema(job, StockReport.SCHEMA$);


        job.setMapperClass(StockAverageMapper.class);
        job.setCombinerClass(StockAverageCombiner.class);
        job.setReducerClass(StockAverageReducer.class);

        FileOutputFormat.setOutputPath(job, outputPath);

    } catch (IOException | ClassCastException e) {
        LOG.error("An job error has occurred.", e);
    }
}

映射器:

public class StockAverageMapper extends
        Mapper<AvroKey<StockReport>, NullWritable, StockYearSymbolKey, StockReport> {
    private static Logger LOG = LoggerFactory.getLogger(StockAverageMapper.class);

private final StockReport stockReport = new StockReport();
private final StockYearSymbolKey stockKey = new StockYearSymbolKey();

@Override
protected void map(AvroKey<StockReport> inKey, NullWritable ignore, Context context)
        throws IOException, InterruptedException {
    try {
        StockReport inKeyDatum = inKey.datum();
        for (Stock stock : inKeyDatum.getStocks()) {
            updateKey(inKeyDatum, stock);
            updateValue(inKeyDatum, stock);
            context.write(stockKey, stockReport);
        }
    } catch (Exception ex) {
        LOG.debug(ex.toString());
    }
}

地图输出键的架构:

    {
  "namespace": "avro.model",
  "type": "record",
  "name": "StockYearSymbolKey",
  "fields": [
    {
      "name": "year",
      "type": "int"
    },
    {
      "name": "symbol",
      "type": "string"
    }
  ]
}

堆栈追踪:

java.lang.Exception: java.lang.IncompatibleClassChangeError: Found interface org.apache.hadoop.mapreduce.TaskAttemptContext, but class was expected
    at org.apache.hadoop.mapred.LocalJobRunner$Job.runTasks(LocalJobRunner.java:462)
    at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:522)
Caused by: java.lang.IncompatibleClassChangeError: Found interface org.apache.hadoop.mapreduce.TaskAttemptContext, but class was expected
    at org.apache.avro.mapreduce.AvroKeyInputFormat.createRecordReader(AvroKeyInputFormat.java:47)
    at org.apache.hadoop.mapred.MapTask$NewTrackingRecordReader.<init>(MapTask.java:492)
    at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:735)
    at org.apache.hadoop.mapred.MapTask.run(MapTask.java:340)
    at org.apache.hadoop.mapred.LocalJobRunner$Job$MapTaskRunnable.run(LocalJobRunner.java:243)
    at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
    at java.util.concurrent.FutureTask.run(FutureTask.java:262)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
    at java.lang.Thread.run(Thread.java:745)

编辑:并不重要但我正努力将其减少为数据我可以从中创建JFreeChart输出。没有通过映射器,所以不应该相关。

2 个答案:

答案 0 :(得分:7)

问题是org.apache.hadoop.mapreduce.TaskAttemptContext是class in Hadoop 1但是变成了interface in Hadoop 2

这是依赖于Hadoop库的库需要为Hadoop 1和Hadoop 2分别编译jar文件的原因之一。根据您的堆栈跟踪,看起来不管怎么说你有一个Hadoop1编译的Avro jar文件,尽管使用Hadoop 2.4.1运行。

download mirrors for Avroavro-mapred-1.7.7-hadoop1.jaravro-mapred-1.7.7-hadoop2.jar提供了不错的单独下载。

答案 1 :(得分:1)

问题在于Avro 1.7.7支持2个版本的Hadoop,因此依赖于两个Hadoop版本。默认情况下,Avro 1.7.7罐子依赖于旧的Hadoop版本。 要使用 Avro 1.7.7 Hadoop2 进行构建,只需向maven依赖项添加额外的a行:

classifier

这会告诉maven搜索 <dependency> <groupId>org.apache.avro</groupId> <artifactId>avro-mapred</artifactId> <version>1.7.7</version> <classifier>hadoop2</classifier> </dependency> ,而不是avro-mapred-1.7.7-hadoop2.jar

同样适用于Avro 1.7.4及更高版本