我正在尝试在第三维上分解4D阵列,并使用MPI发送到每个节点。基本上,我正在计算三个笛卡儿方向中每一个中原子位置的矩阵Cpq的导数。 Cpq的大小为nat_sl x nat_sl,因此dCpqdR的大小为nat_sl x nat_sl x nat x 3.在一天结束时,对于s,i,我必须计算dCpqdR在特征向量转置之间的矩阵乘积Cpq和Cpq的特征向量如下:
temp = MATMUL(TRANSPOSE(Cpq), MATMUL(dCpqdR(:, :, s, i), Cpq))
这很好,但事实证明,s和i的循环现在是我代码的缓慢部分。因为每个都可以独立完成,我希望我可以分解dCpqdR,并给每个任务它自己的s,我计算它的衍生物。也就是说,我希望任务1获得dCpqdR(:,:1,1),任务2获得dCpqdR(:,:,1,2)等。
我在某种意义上通过使用缓冲的send / recv调用来实现这一点。根节点分配临时数组,填充它,发送到相关节点,相关节点按照自己的意愿进行计算。这很好,但速度慢且内存效率低。理想情况下,我希望以更有效的方式分解它。
然而,合乎逻辑的做法是使用mpi_scatterv,但这是我开始遇到麻烦的地方,因为我无法弄清楚内存布局。到目前为止,我写过这篇文章:
call mpi_type_create_subarray(4, (/ nat_sl, nat_sl, nat, 3 /), (/nat_sl, nat_sl, n_pairs(me_image+1), 3/),&
(/0, 0, 0, 0/), mpi_order_fortran, mpi_double_precision, subarr_typ, ierr)
call mpi_type_commit(subarr_typ, ierr)
call mpi_scatterv(dCpqdR, n_pairs(me_image+1), f_displs, subarr_typ,&
my_dCpqdR, 3*nat_sl*3*nat_sl*3*n_pairs(me_image+1), subarr_typ,&
root_image, intra_image_comm, ierr)
我使用这个子程序计算了n_pairs:
subroutine mbdvdw_para_init_int_forces()
implicit none
integer :: p, s, i, counter, k, cpu_ind
integer :: num_unique_rpq, n_pairs_per_proc, cpu
real(dp) :: Rpq(3), Rpq_norm, current_val
num_pairs = nat
if(.not.allocated(f_cpu_id)) allocate(f_cpu_id(nat, 3))
n_pairs_per_proc = floor(dble(num_pairs)/nproc_image)
cpu = 0
n_pairs = 0
counter = 1
p = 1
do counter = 0, num_pairs-1, 1
n_pairs(modulo(counter, nproc_image)+1) = n_pairs(modulo(counter, nproc_image)+1) + 1
end do
do s = 1, nat, 1
f_cpu_id(s) = cpu
if((counter.lt.num_pairs)) then
if(p.eq.n_pairs(cpu+1)) then
cpu = cpu + 1
p = 0
end if
end if
p = p + 1
end do
call mp_set_displs( n_pairs, f_displs, num_pairs, nproc_image)
f_displs = f_displs*nat_sl*nat_sl*3
end subroutine mbdvdw_para_init_int_forces
和矩阵乘法的完整方法是
subroutine mbdvdw_interacting_energy(energy, forcedR, forcedh, forcedV)
implicit none
real(dp), intent(out) :: energy
real(dp), dimension(nat, 3), intent(out) :: forcedR
real(dp), dimension(3,3), intent(out) :: forcedh
real(dp), dimension(nat), intent(out) :: forcedV
real(dp), dimension(3*nat_sl, 3*nat_sl) :: temp
real(dp), dimension(:,:,:,:), allocatable :: my_dCpqdR
integer :: num_negative, i_atom, s, i, j, counter
integer, parameter :: eigs_check = 200
integer :: subarr_typ, ierr
! lapack work variables
integer :: LWORK, errorflag
real(dp) :: WORK((3*nat_sl)*(3+(3*nat_sl)/2)), eigenvalues(3*nat_sl)
call start_clock('mbd_int_energy')
call mp_sum(Cpq, intra_image_comm)
eigenvalues = 0.0_DP
forcedR = 0.0_DP
energy = 0.0_DP
num_negative = 0
forcedV = 0.0_DP
errorflag=0
LWORK=3*nat_sl*(3+(3*nat_sl)/2)
call DSYEV('V', 'U', 3*nat_sl, Cpq, 3*nat_sl, eigenvalues, WORK, LWORK, errorflag)
if(errorflag.eq.0) then
do i_atom=1, 3*nat_sl, 1
!open (unit=eigs_check, file="eigs.tmp",action="write",status="unknown",position="append")
! write(eigs_check, *) eigenvalues(i_atom)
!close(eigs_check)
if(eigenvalues(i_atom).ge.0.0_DP) then
energy = energy + dsqrt(eigenvalues(i_atom))
else
num_negative = num_negative + 1
end if
end do
if(num_negative.ge.1) then
write(stdout, '(3X," WARNING: Found ", I3, " Negative Eigenvalues.")'), num_negative
end if
else
end if
energy = energy*nat/nat_sl
!!!!!!!!!!!!!!!!!!!!
! Forces below here. There's going to be some long parallelization business.
!!!!!!!!!!!!!!!!!!!!
call start_clock('mbd_int_forces')
if(.not.allocated(my_dCpqdR)) allocate(my_dCpqdR(nat_sl, nat_sl, n_pairs(me_image+1), 3)), my_dCpqdR = 0.0_DP
if(mbd_vdw_forces) then
do s=1,nat,1
if(me_image.eq.(f_cpu_id(s)+1)) then
do i=1,3,1
temp = MATMUL(TRANSPOSE(Cpq), MATMUL(my_dCpqdR(:, :, counter, i), Cpq))
do j=1,3*nat_sl,1
if(eigenvalues(j).ge.0.0_DP) then
forcedR(s, i) = forcedR(s, i) + 1.0_DP/(2.0_DP*dsqrt(eigenvalues(j)))*temp(j,j)
end if
end do
end do
counter = counter + 1
end if
end do
forcedR = forcedR*nat/nat_sl
do s=1,3,1
do i=1,3,1
temp = MATMUL(TRANSPOSE(Cpq), MATMUL(dCpqdh(:, :, s, i), Cpq))
do j=1,3*nat_sl,1
if(eigenvalues(j).ge.0.0_DP) then
forcedh(s, i) = forcedh(s, i) + 1.0_DP/(2.0_DP*dsqrt(eigenvalues(j)))*temp(j,j)
end if
end do
end do
end do
forcedh = forcedh*nat/nat_sl
call mp_sum(forcedR, intra_image_comm)
call mp_sum(forcedh, intra_image_comm)
end if
call stop_clock('mbd_int_forces')
call stop_clock('mbd_int_energy')
return
end subroutine mbdvdw_interacting_energy
但是当跑步时,它抱怨
[MathBook Pro:58100] *** An error occurred in MPI_Type_create_subarray
[MathBook Pro:58100] *** reported by process [2560884737,2314885530279477248]
[MathBook Pro:58100] *** on communicator MPI_COMM_WORLD
[MathBook Pro:58100] *** MPI_ERR_ARG: invalid argument of some other kind
[MathBook Pro:58100] *** MPI_ERRORS_ARE_FATAL (processes in this communicator will now abort,
[MathBook Pro:58100] *** and potentially your MPI job)
所以出了问题,但我不知道是什么。我知道我的描述开始时有些稀疏,所以请告诉我需要哪些信息来帮助。