Scala
代码:
@annotation.tailrec
private def fastLoop(n: Int, a: Long = 0, b: Long = 1): Long =
if (n > 1) fastLoop(n - 1, b, a + b) else b
字节码:
private long fastLoop(int, long, long);
Code:
0: iload_1
1: iconst_1
2: if_icmple 21
5: iload_1
6: iconst_1
7: isub
8: lload 4
10: lload_2
11: lload 4
13: ladd
14: lstore 4
16: lstore_2
17: istore_1
18: goto 0
21: lload 4
23: lreturn
结果为53879289.462 ± 6289454.961 ops/s
:
https://travis-ci.org/plokhotnyuk/scala-vs-java/jobs/56117116#L2909
Java
代码:
private long fastLoop(int n, long a, long b) {
while (n > 1) {
long c = a + b;
a = b;
b = c;
n--;
}
return b;
}
字节码:
private long fastLoop(int, long, long);
Code:
0: iload_1
1: iconst_1
2: if_icmple 24
5: lload_2
6: lload 4
8: ladd
9: lstore 6
11: lload 4
13: lstore_2
14: lload 6
16: lstore 4
18: iinc 1, -1
21: goto 0
24: lload 4
26: lreturn
结果为17444340.812 ± 9508030.117 ops/s
:
https://travis-ci.org/plokhotnyuk/scala-vs-java/jobs/56117116#L2881
是的,它取决于环境参数(JDK版本,CPU型号和RAM的频率)和动态。但是为什么在同一环境中大多数相同的字节码可以为函数参数范围产生稳定的2x-3x差异?
以下是笔记本电脑的不同功能参数值的ops / s编号列表,其中Intel(R)Core(TM)i7-2640M CPU @ 2.80GHz(最大3.50GHz),RAM 12Gb DDR3-1333,Ubuntu 14.10 ,Oracle JDK 1.8.0_40-b25 64位:
[info] Benchmark (n) Mode Cnt Score Error Units
[info] JavaFibonacci.loop 2 thrpt 5 171776163.027 ± 4620419.353 ops/s
[info] JavaFibonacci.loop 4 thrpt 5 144793748.362 ± 25506649.671 ops/s
[info] JavaFibonacci.loop 8 thrpt 5 67271848.598 ± 15133193.309 ops/s
[info] JavaFibonacci.loop 16 thrpt 5 54552795.336 ± 17398924.190 ops/s
[info] JavaFibonacci.loop 32 thrpt 5 41156886.101 ± 12905023.289 ops/s
[info] JavaFibonacci.loop 64 thrpt 5 24407771.671 ± 4614357.030 ops/s
[info] ScalaFibonacci.loop 2 thrpt 5 148926292.076 ± 23673126.125 ops/s
[info] ScalaFibonacci.loop 4 thrpt 5 139184195.527 ± 30616384.925 ops/s
[info] ScalaFibonacci.loop 8 thrpt 5 109050091.514 ± 23506756.224 ops/s
[info] ScalaFibonacci.loop 16 thrpt 5 81290743.288 ± 5214733.740 ops/s
[info] ScalaFibonacci.loop 32 thrpt 5 38937420.431 ± 8324732.107 ops/s
[info] ScalaFibonacci.loop 64 thrpt 5 22641295.988 ± 5961435.507 ops/s
附加问题是"为什么ops / s的值如上所述以非线性方式递减?"
答案 0 :(得分:1)
是的,我错了,错过了测试方法不只是fastLoop
来电:
<强> Scala的强>
@Benchmark
def loop(): BigInt =
if (n > 92) loop(n - 91, 4660046610375530309L, 7540113804746346429L)
else fastLoop(n)
<强>爪哇强>
@Benchmark
public BigInteger loop() {
return n > 92 ?
loop(n - 91, BigInteger.valueOf(4660046610375530309L), BigInteger.valueOf(7540113804746346429L)) :
BigInteger.valueOf(fastLoop(n, 0, 1));
}
正如Aleksey所说,很多时间用于从Long/long
转换为BigInt/BigInteger
。
我编写了单独的基准测试,只测试fastLoop(n, 0, 1)
调用。以下是他们的结果:
[info] JavaFibonacci.fastLoop 2 thrpt 5 338071686.910 ± 66146042.535 ops/s
[info] JavaFibonacci.fastLoop 4 thrpt 5 231066635.073 ± 3702419.585 ops/s
[info] JavaFibonacci.fastLoop 8 thrpt 5 174832245.690 ± 36491363.939 ops/s
[info] JavaFibonacci.fastLoop 16 thrpt 5 95162799.968 ± 16151609.596 ops/s
[info] JavaFibonacci.fastLoop 32 thrpt 5 60197918.766 ± 10662747.434 ops/s
[info] JavaFibonacci.fastLoop 64 thrpt 5 29564087.602 ± 3610164.011 ops/s
[info] ScalaFibonacci.fastLoop 2 thrpt 5 336588218.560 ± 56762496.725 ops/s
[info] ScalaFibonacci.fastLoop 4 thrpt 5 224918874.670 ± 35499107.133 ops/s
[info] ScalaFibonacci.fastLoop 8 thrpt 5 121952667.394 ± 17314931.711 ops/s
[info] ScalaFibonacci.fastLoop 16 thrpt 5 96573968.960 ± 12757890.175 ops/s
[info] ScalaFibonacci.fastLoop 32 thrpt 5 59462408.940 ± 14924369.138 ops/s
[info] ScalaFibonacci.fastLoop 64 thrpt 5 28922994.377 ± 7209467.197 ops/s
我学到的经验教训:
Scala暗示可以吃很多性能,但容易被忽视;
与Java的BigInteger相比,Scala中BigInt值的兑现可以加速某些功能。