为什么用于斐波那契计算的简单Scala tailrec循环比Java循环快3倍?

时间:2015-03-27 20:15:18

标签: java scala tail-recursion jmh

Scala

代码:

@annotation.tailrec
private def fastLoop(n: Int, a: Long = 0, b: Long = 1): Long = 
  if (n > 1) fastLoop(n - 1, b, a + b) else b

字节码:

  private long fastLoop(int, long, long);
    Code:
       0: iload_1
       1: iconst_1
       2: if_icmple     21
       5: iload_1
       6: iconst_1
       7: isub
       8: lload         4
      10: lload_2
      11: lload         4
      13: ladd
      14: lstore        4
      16: lstore_2
      17: istore_1
      18: goto          0
      21: lload         4
      23: lreturn

结果为53879289.462 ± 6289454.961 ops/s

https://travis-ci.org/plokhotnyuk/scala-vs-java/jobs/56117116#L2909

Java

代码:

private long fastLoop(int n, long a, long b) {
    while (n > 1) {
        long c = a + b;
        a = b;
        b = c;
        n--;
    }
    return b;
}

字节码:

  private long fastLoop(int, long, long);
    Code:
       0: iload_1
       1: iconst_1
       2: if_icmple     24
       5: lload_2
       6: lload         4
       8: ladd
       9: lstore        6
      11: lload         4
      13: lstore_2
      14: lload         6
      16: lstore        4
      18: iinc          1, -1
      21: goto          0
      24: lload         4
      26: lreturn

结果为17444340.812 ± 9508030.117 ops/s

https://travis-ci.org/plokhotnyuk/scala-vs-java/jobs/56117116#L2881

是的,它取决于环境参数(JDK版本,CPU型号和RAM的频率)和动态。但是为什么在同一环境中大多数相同的字节码可以为函数参数范围产生稳定的2x-3x差异?

以下是笔记本电脑的不同功能参数值的ops / s编号列表,其中Intel(R)Core(TM)i7-2640M CPU @ 2.80GHz(最大3.50GHz),RAM 12Gb DDR3-1333,Ubuntu 14.10 ,Oracle JDK 1.8.0_40-b25 64位:

[info] Benchmark            (n)   Mode  Cnt          Score          Error  Units
[info] JavaFibonacci.loop     2  thrpt    5  171776163.027 ±  4620419.353  ops/s
[info] JavaFibonacci.loop     4  thrpt    5  144793748.362 ± 25506649.671  ops/s
[info] JavaFibonacci.loop     8  thrpt    5   67271848.598 ± 15133193.309  ops/s
[info] JavaFibonacci.loop    16  thrpt    5   54552795.336 ± 17398924.190  ops/s
[info] JavaFibonacci.loop    32  thrpt    5   41156886.101 ± 12905023.289  ops/s
[info] JavaFibonacci.loop    64  thrpt    5   24407771.671 ±  4614357.030  ops/s
[info] ScalaFibonacci.loop    2  thrpt    5  148926292.076 ± 23673126.125  ops/s
[info] ScalaFibonacci.loop    4  thrpt    5  139184195.527 ± 30616384.925  ops/s
[info] ScalaFibonacci.loop    8  thrpt    5  109050091.514 ± 23506756.224  ops/s
[info] ScalaFibonacci.loop   16  thrpt    5   81290743.288 ±  5214733.740  ops/s
[info] ScalaFibonacci.loop   32  thrpt    5   38937420.431 ±  8324732.107  ops/s
[info] ScalaFibonacci.loop   64  thrpt    5   22641295.988 ±  5961435.507  ops/s

附加问题是"为什么ops / s的值如上所述以非线性方式递减?"

1 个答案:

答案 0 :(得分:1)

是的,我错了,错过了测试方法不只是fastLoop来电:

<强> Scala的

  @Benchmark
  def loop(): BigInt =
    if (n > 92) loop(n - 91, 4660046610375530309L, 7540113804746346429L)
    else fastLoop(n)

<强>爪哇

 @Benchmark
    public BigInteger loop() {
        return n > 92 ?
                loop(n - 91, BigInteger.valueOf(4660046610375530309L), BigInteger.valueOf(7540113804746346429L)) :
                BigInteger.valueOf(fastLoop(n, 0, 1));
    }

正如Aleksey所说,很多时间用于从Long/long转换为BigInt/BigInteger

我编写了单独的基准测试,只测试fastLoop(n, 0, 1)调用。以下是他们的结果:

[info] JavaFibonacci.fastLoop     2  thrpt    5  338071686.910 ± 66146042.535  ops/s
[info] JavaFibonacci.fastLoop     4  thrpt    5  231066635.073 ±  3702419.585  ops/s
[info] JavaFibonacci.fastLoop     8  thrpt    5  174832245.690 ± 36491363.939  ops/s
[info] JavaFibonacci.fastLoop    16  thrpt    5   95162799.968 ± 16151609.596  ops/s
[info] JavaFibonacci.fastLoop    32  thrpt    5   60197918.766 ± 10662747.434  ops/s
[info] JavaFibonacci.fastLoop    64  thrpt    5   29564087.602 ±  3610164.011  ops/s
[info] ScalaFibonacci.fastLoop    2  thrpt    5  336588218.560 ± 56762496.725  ops/s
[info] ScalaFibonacci.fastLoop    4  thrpt    5  224918874.670 ± 35499107.133  ops/s
[info] ScalaFibonacci.fastLoop    8  thrpt    5  121952667.394 ± 17314931.711  ops/s
[info] ScalaFibonacci.fastLoop   16  thrpt    5   96573968.960 ± 12757890.175  ops/s
[info] ScalaFibonacci.fastLoop   32  thrpt    5   59462408.940 ± 14924369.138  ops/s
[info] ScalaFibonacci.fastLoop   64  thrpt    5   28922994.377 ±  7209467.197  ops/s

我学到的经验教训:

  • Scala暗示可以吃很多性能,但容易被忽视;

  • 与Java的BigInteger相比,Scala中BigInt值的兑现可以加速某些功能。