我有一组原始图像补丁(101x101矩阵)和另一组二进制的图像补丁(相同大小101x101),它们是训练神经网络的“答案”。我想训练我的神经网络,以便它可以学习,识别从给定图像训练的形状,并在输出矩阵(作为分割的结果)产生图像(可能是150x10201的相同矩阵?)。 / p>
原始图像在左侧,所需的输出在右侧。
因此,对于数据的预处理阶段,我将原始图像块重新整形为1x10201
的每个图像块的矢量矩阵。结合其中的150个,我得到一个150x10201
矩阵作为我的输入,另一个150x10201
矩阵来自二进制图像补丁。然后我将这些输入数据提供给深度学习网络。在这种情况下,我使用了Deep Belief Network。
用于设置和训练DBN的我的Matlab代码如下:
%训练4层100隐藏单元DBN并使用其权重初始化NN
rand('state',0)
%train dbn
dbn.sizes = [100 100 100 100];
opts.numepochs = 5;
opts.batchsize = 10;
opts.momentum = 0;
opts.alpha = 1;
dbn = dbnsetup(dbn, train_x, opts);
dbn = dbntrain(dbn, train_x, opts);
%展开dbn到nn
nn = dbnunfoldtonn(dbn, 10201);
nn.activation_function = 'sigm';
%train nn
opts.numepochs = 1;
opts.batchsize = 10;
assert(isfloat(train_x), 'train_x must be a float');
assert(nargin == 4 || nargin == 6,'number ofinput arguments must be 4 or 6')
loss.train.e = [];
loss.train.e_frac = [];
loss.val.e = [];
loss.val.e_frac = [];
opts.validation = 0;
if nargin == 6
opts.validation = 1;
end
fhandle = [];
if isfield(opts,'plot') && opts.plot == 1
fhandle = figure();
end
m = size(train_x, 1);
batchsize = opts.batchsize;
numepochs = opts.numepochs;
numbatches = m / batchsize;
assert(rem(numbatches, 1) == 0, 'numbatches must be a integer');
L = zeros(numepochs*numbatches,1);
n = 1;
for i = 1 : numepochs
tic;
kk = randperm(m);
for l = 1 : numbatches
batch_x = train_x(kk((l - 1) * batchsize + 1 : l * batchsize), :);
%Add noise to input (for use in denoising autoencoder)
if(nn.inputZeroMaskedFraction ~= 0)
batch_x = batch_x.*(rand(size(batch_x))>nn.inputZeroMaskedFraction);
end
batch_y = train_y(kk((l - 1) * batchsize + 1 : l * batchsize), :);
nn = nnff(nn, batch_x, batch_y);
nn = nnbp(nn);
nn = nnapplygrads(nn);
L(n) = nn.L;
n = n + 1;
end
t = toc;
if opts.validation == 1
loss = nneval(nn, loss, train_x, train_y, val_x, val_y);
str_perf = sprintf('; Full-batch train mse = %f, val mse = %f',
loss.train.e(end), loss.val.e(end));
else
loss = nneval(nn, loss, train_x, train_y);
str_perf = sprintf('; Full-batch train err = %f', loss.train.e(end));
end
if ishandle(fhandle)
nnupdatefigures(nn, fhandle, loss, opts, i);
end
disp(['epoch ' num2str(i) '/' num2str(opts.numepochs) '. Took ' num2str(t) ' seconds' '. Mini-batch mean squared error on training set is ' num2str(mean(L((n-numbatches):(n-1)))) str_perf]);
nn.learningRate = nn.learningRate * nn.scaling_learningRate;
end
任何人都可以告诉我,像这样的NN培训是否可以让它进行细分工作?或者我应该如何修改代码以训练NN,以便它可以以150x10201
形式生成输出/结果作为图像矩阵?
非常感谢你..
答案 0 :(得分:1)
你的投入太大了。您应该尝试使用从19x19到最大30x30的较小补丁(已经将900个神经元代表到输入层中)。
然后是您的主要问题:您只有150张图片!当你训练NN时,你需要至少三倍的训练实例而不是你的NN的重量。所以要非常小心你选择的架构。
CNN可能更适合您的问题。