目标:输入图像(2d numpy数组)和窗口大小,并输出剩余局部最大值的相同数组,但在其他位置输出0。
我正在努力解决的问题:我认为我在代码中犯了一个愚蠢的错误,可能是我的循环中有一些错字但我不确定(局部最大值只在左侧)图像,这不是真的)。正如我在下面提到的,我也欢迎任何使用OpenCV或numpy的简单技巧来缩短此解决方案。
类似的问题:Finding Local Maxima in an Image
和Find local maxima in grayscale image using OpenCV
我的不同之处是因为:我希望除了局部最大值之外的所有压力。我不必在下面使用我的代码,我无法找到opencv或numpy的内置函数来做我需要的东西(cv中的哈里斯角会隐式地将其作为其中一个步骤,但我需要一些东西来执行我需要的唯一操作)。我读了一点关于扩张的信息,并不确定这在这里是否有用。
到目前为止我尝试了什么。
def nonMaximalSupress(image,NHoodSize):
#For
for x in range(0,image.shape[0]-1):
if x+NHoodSize[0]<image.shape[0]:
#while we can still take a square
#print "AHH ", image.shape
startWindow=0
for y in range(startWindow,image.shape[1]-NHoodSize[1]):
#try:
if np.sum(image[x:x+NHoodSize[0]][y:y+NHoodSize[1]])==0:
localMax=0
else:
localMax = np.amax(image[x:x+NHoodSize[0]][y:y+NHoodSize[1]])
#except ValueError:
#localMax=0
#print "local max is ", localMax
maxCoord=np.unravel_index(np.argmax((image[x:x+NHoodSize[0],y:y+NHoodSize[1]])),
image.shape)+np.array((x,y))
#print "X is %r, Y is %r, max coord is %r \n y+nhood is %r" %(x,y,maxCoord,y+NHoodSize[1])
#suppress everything
image[x:x+NHoodSize[0]][y:y+NHoodSize[1]]=0
#reset only the max
#print maxCoord
if localMax > 0:
print localMax
print "max coord is ", maxCoord[0], maxCoord[1]
image[maxCoord[0]][maxCoord[1]]=localMax
#increment y
x+=NHoodSize[0]
return image
答案 0 :(得分:4)
这样的事情怎么样:
# Use the max filter to make a mask
roi = 3
size = 2 * roi + 1
image_max = ndimage.maximum_filter(image, size=size, mode='constant')
mask = (image == image_max)
image *= mask
# Remove the image borders
image[:roi] = 0
image[-roi:] = 0
image[:, :roi] = 0
image[:, -roi:] = 0
# Optionally find peaks above some threshold
image_t = (image > peak_threshold) * 1
# get coordinates of peaks
f = np.transpose(image_t.nonzero())
答案 1 :(得分:1)
这可能不完全正确,但在小型测试用例中效果更好
def nonMaximalSupress1(image,NHoodSize):
#
dX, dY = NHoodSize
M, N = image.shape
for x in range(0,M-dX+1):
for y in range(0,N-dY+1):
window = image[x:x+dX, y:y+dY]
if np.sum(window)==0:
localMax=0
else:
localMax = np.amax(window)
maxCoord=np.unravel_index(np.argmax(window), window.shape) + np.array((x,y))
#suppress everything
image[x:x+dX, y:y+dY]=0
#reset only the max
if localMax > 0:
print localMax
print "max coord is ", maxCoord
image[tuple(maxCoord)] = localMax
return image
我使用了局部变量来使事情更容易阅读,并调整了循环范围。但最大的变化在于我如何索引image
。特别是在使用切片进行索引时,必须使用一组括号。
image[x:x+dX, y:y+dY]
是选择窗口的正确方法,而不是image[x:x+dX][y:y+dY]
。
通过修改window
可以将其清理一下。由于它是view
,因此更改image
。
def nonMaximalSupress2(image,NHoodSize):
#
dX, dY = NHoodSize
M, N = image.shape
for x in range(0,M-dX+1):
for y in range(0,N-dY+1):
window = image[x:x+dX, y:y+dY]
if np.sum(window)==0:
localMax=0
else:
localMax = np.amax(window)
maxCoord = np.argmax(window)
# zero all but the localMax in the window
window[:] = 0
window.flat[maxCoord] = localMax
return image
答案 2 :(得分:0)
使用来自skimage.feature.peak
的peak_local_max
和来自scipy.ndimage.measurements
的center_of_mass
来定位峰值中心的不同方法,如果峰值可能包含具有相同像素强度的多个像素:
from skimage.feature.peak import peak_local_max
from scipy.ndimage.measurements import center_of_mass
from scipy.ndimage import label
from scipy.ndimage.morphology import generate_binary_structure
footprint = generate_binary_structure(3, 3)
peaks = peak_local_max(img, indices=False, footprint=footprint)
lbl, num_features = label(maxima)
centers = center_of_mass(maxima, lbl, range(1, num_features + 1))
values = img[tuple(np.int0(np.transpose(centers)))]