欢迎所有热情的程序员。我的代码需要你的帮助。
我的目标:有效地将数据从Amazon S3移动到Amazon Redshift。
基本上我使用下面的代码将S3上的所有CSV文件移动到Redshift。我解析部分文件,构建一个表结构,然后使用copy命令将数据加载到redshift中。
'''
Created on Feb 25, 2015
@author: Siddartha.Reddy
'''
import sys
from boto.s3 import connect_to_region
from boto.s3.connection import Location
import csv
import itertools
import psycopg2
''' ARGUMENTS TO PASS '''
AWS_KEY = sys.argv[1]
AWS_SECRET_KEY = sys.argv[2]
S3_DOWNLOAD_PATH = sys.argv[3]
REDSHIFT_SCHEMA = sys.argv[4]
TABLE_NAME = sys.argv[5]
UTILS = S3_DOWNLOAD_PATH.split('/')
class UTIL():
global UTILS
def bucket_name(self):
self.BUCKET_NAME = UTILS[0]
return self.BUCKET_NAME
def path(self):
self.PATH = ''
offset = 0
for value in UTILS:
if offset == 0:
offset += 1
else:
self.PATH = self.PATH + value + '/'
return self.PATH[:-1]
def GETDATAINMEMORY():
conn = connect_to_region(Location.USWest2,aws_access_key_id = AWS_KEY,
aws_secret_access_key = AWS_SECRET_KEY,
is_secure=False,host='s3-us-west-2.amazonaws.com'
)
ut = util()
BUCKET_NAME = ut.bucket_name()
PATH = ut.path()
filelist = conn.lookup(BUCKET_NAME)
''' Fecth part of the data from S3 '''
for path in filelist:
if PATH in path.name:
DATA = path.get_contents_as_string(headers={'Range': 'bytes=%s-%s' % (0,100000000)})
return DATA
def TRAVERSEDATA():
DATA = getdatainmemory()
CREATE_TABLE_QUERY = 'CREATE TABLE ' + REDSHIFT_SCHEMA + '.' + TABLE_NAME + '( '
JUNKED_OUT = DATA[3:]
PROCESSED_DATA = JUNKED_OUT.split('\n')
CSV_DATA = csv.reader(PROCESSED_DATA,delimiter=',')
COUNTER,STRING,NUMBER = 0,0,0
COLUMN_TYPE = []
''' GET COLUMN NAMES AND COUNT '''
for line in CSV_DATA:
NUMBER_OF_COLUMNS = len(line)
COLUMN_NAMES = line
break;
''' PROCESS COLUMN NAMES '''
a = 0
for REMOVESPACE in COLUMN_NAMES:
TEMPHOLDER = REMOVESPACE.split(' ')
temp1 = ''
for x in TEMPHOLDER:
temp1 = temp1 + x
COLUMN_NAMES[a] = temp1
a = a + 1
''' GET COLUMN DATA TYPES '''
# print(NUMBER_OF_COLUMNS,COLUMN_NAMES,COUNTER)
# print(NUMBER_OF_COLUMNS)
i,j,a= 0,500,0
while COUNTER < NUMBER_OF_COLUMNS:
for COLUMN in itertools.islice(CSV_DATA,i,j+1):
if COLUMN[COUNTER].isdigit():
NUMBER = NUMBER + 1
else:
STRING = STRING + 1
if NUMBER == 501:
COLUMN_TYPE.append('INTEGER')
# print('I CAME IN')
NUMBER = 0
else:
COLUMN_TYPE.append('VARCHAR(2500)')
STRING = 0
COUNTER = COUNTER + 1
# print(COUNTER)
COUNTER = 0
''' BUILD SCHEMA '''
while COUNTER < NUMBER_OF_COLUMNS:
if COUNTER == 0:
CREATE_TABLE_QUERY = CREATE_TABLE_QUERY + COLUMN_NAMES[COUNTER] + ' ' + COLUMN_TYPE[COUNTER] + ' NOT NULL,'
else:
CREATE_TABLE_QUERY = CREATE_TABLE_QUERY + COLUMN_NAMES[COUNTER] + ' ' + COLUMN_TYPE[COUNTER] + ' ,'
COUNTER += 1
CREATE_TABLE_QUERY = CREATE_TABLE_QUERY[:-2]+ ')'
return CREATE_TABLE_QUERY
def COPY_COMMAND():
S3_PATH = 's3://' + S3_DOWNLOAD_PATH
COPY_COMMAND = "COPY "+REDSHIFT_SCHEMA+"."+TABLE_NAME+" from '"+S3_PATH+"' credentials 'aws_access_key_id="+AWS_KEY+";aws_secret_access_key="+AWS_SECRET_KEY+"' REGION 'us-west-2' csv delimiter ',' ignoreheader as 1 TRIMBLANKS maxerror as 500"
return COPY_COMMAND
def S3TOREDSHIFT():
conn = psycopg2.connect("dbname='xxx' port='5439' user='xxx' host='xxxxxx' password='xxxxx'")
cursor = conn.cursor()
cursor.execute('DROP TABLE IF EXISTS '+ REDSHIFT_SCHEMA + "." + TABLE_NAME)
SCHEMA = TRAVERSEDATA()
print(SCHEMA)
cursor.execute(SCHEMA)
COPY = COPY_COMMAND()
print(COPY)
cursor.execute(COPY)
conn.commit()
S3TOREDSHIFT()
目前的挑战:
创建表结构的挑战:
我可以使用任何数据结构吗?我总是有兴趣学习改进表现的新方法,如果你们有任何建议,请随时发表评论。