我正在尝试使用此Python代码来填充此矩阵data的列:
#!/usr/local/bin/env python
import numpy as np
import Tkinter #Used for file import
import tkFileDialog #Used for file import
import os
import scipy
import scipy.optimize as optimize
root = Tkinter.Tk()
root.withdraw() #use to hide tkinter window
filename = os.getcwd()
background = os.getcwd()
filename = tkFileDialog.askopenfile(parent=root,mode='rb',title='Choose a file')
background = tkFileDialog.askopenfile(parent=root,mode='rb',title='Choose a background')
filename = filename.name
#filename = r'bb1e03'
#background = r'bb1e03_background'
T0 = np.loadtxt(filename, unpack=False)
bg = np.loadtxt(background, unpack=False)
T = T0-bg # background subtraction?
#T = T.clip(min=0)
T[T<0]=0
T = np.flipud(T)
N, M = T.shape
datax = np.arange(N)
def gaussian(x, height, center, width, offset):
return height*np.exp(-(x - center)**2/(2*width**2)) + offset
def three_gaussians(x, h1, c1, w1, h2, c2, w2, h3, c3, w3, offset):
return (gaussian(x, h1, c1, w1, offset=0) +
gaussian(x, h2, c2, w2, offset=0) +
gaussian(x, h3, c3, w3, offset=0) + offset)
def two_gaussians(x, h1, c1, w1, h2, c2, w2, offset):
return three_gaussians(x, h1, c1, w1, h2, c2, w2, 0,0,1, offset)
def one_gaussian(x,h1,c1,w1, offset):
return (gaussian(x, h1, c1, w1, offset=0)+offset)
#errfunc3 = lambda p, x, y: (three_gaussians(x, *p) - y)**2
#errfunc2 = lambda p, x, y: (two_gaussians(x, *p) - y)**2
#errfunc1 = lambda p, x, y: (one_gaussian(x, *p) - y)**2
#output files for fit parameters
outfile1 = open('results_1gau.txt', 'w')
outfile2 = open('results_2gau.txt', 'w')
outfile3 = open('results_3gau.txt', 'w')
outfile1.write('column\th1\tc1\tw1\toffset\n')
outfile2.write('column\th1\tc1\tw1\th2\tc2\tw2\toffset\n')
outfile3.write('column\th1\tc1\tw1\th2\tc2\tw2\th3\tc3\tw3\toffset\n')
# new matrices for fitted data
datafit1 = np.empty_like(T)
datafit2 = np.empty_like(T)
datafit3 = np.empty_like(T)
for n in xrange(M):
Mmax = T[:,n].max()
guess1 = [0.5*Mmax, N/10., 10., 0.]
guess2 = [0.5*Mmax, N/10., 10., 0.5*Mmax, N/10., 10., 0.]
guess3 = [0.5*Mmax, N/10., 10., 0.5*Mmax, N/10., 10.,
0.5*Mmax, N/10., 10., 0]
#optim3, success = optimize.leastsq(errfunc3, guess3[:],
# args=(datax, data[:,n]))
#optim2, success = optimize.leastsq(errfunc2, guess2[:],
# args=(datax, data[:,n]))
try:
optim1, pcov = optimize.curve_fit(one_gaussian, datax, T[:,n], guess1)
except:
optim1 = [0, 0, 1, 0]
try:
optim2, pcov = optimize.curve_fit(two_gaussians, datax, T[:,n], guess2)
except:
optim2 = [0, 0, 1, 0, 0, 1, 0]
try:
optim3, pcov = optimize.curve_fit(three_gaussians, datax, T[:,n], guess3)
except:
optim3 = [0, 0, 1, 0, 0, 1, 0, 0, 1, 0]
# write parameters to file (1 gau)
s = '{}'.format(n)
for x in guess1:
s += '\t{:g}'.format(x)
outfile1.write(s + '\n')
# write parameters to file (2 gau)
s = '{}'.format(n)
for x in guess2:
s += '\t{:g}'.format(x)
outfile2.write(s + '\n')
# write parameters to file (3 gau)
s = '{}'.format(n)
for x in guess3:
s += '\t{:g}'.format(x)
outfile3.write(s + '\n')
# fill new matrices with fitted data
datafit1[:,n] = one_gaussian(datax, *optim1)
datafit2[:,n] = two_gaussians(datax, *optim2)
datafit3[:,n] = three_gaussians(datax, *optim3)
T = datafit1
我已阅读大部分与拟合相关的相关帖子,但我找不到我的代码有什么问题。它应该可以工作,但最终矩阵“T”只显示具有常数的列,而不是一个很好的平滑高斯形状曲线。请看一看,告诉我我做错了什么。我已尝试过其他程序,例如OriginLab,并且拟合效果很好。
谢谢。
答案 0 :(得分:3)
您遇到了为曲线拟合算法提供错误猜测的经典问题。这完全是由于你不必要的颠倒翻转矩阵T然后没有考虑到高斯的新位置(名为center
的参数,传递给gaussian()
- 我记得{{3} })。
你知道,这就是当我对原始数据进行拟合时会发生什么:
T = T0-bg # background subtraction?
fitparams_me, fitparams_you = [], []
for colind in xrange(16,19):
column = T[:,colind]
guess = column.max(), column.argmax(), 3, 0 # Good guess for a SINGLE gaussian
popt, pcov = optimize.curve_fit(one_gaussian, datax, column, p0=guess)
fitparams_me.append(popt)
print(fitparams_me)
显示:
[array([ 365.40098996, 91.24095009, 1.11390434, -0.99632476]),
array([ 348.4327168 , 92.0262556 , 1.26650618, -1.08018819]),
array([ 413.21526868, 90.8569241 , 1.0445618 , -1.0565371 ])]
这些非常适合。
现在这就是你正在做的事情:你首先将矩阵翻转过来,但你会继续假设峰值位于第一行。但是,不再是这种情况,本代码强调:
T = np.flipud(T)
for colind in xrange(16,19):
column = T[:,colind]
guess = column.max(), column.argmax(), 3, 0 # Good guess for a SINGLE gaussian
your_guess = [0.5*Mmax, N/10., 10., 0.]
print guess[1], your_guess[1]
popt, pcov = optimize.curve_fit(one_gaussian, datax, column, p0=your_guess)
fitparams_you.append(popt)
# printed results:
932 102.4
931 102.4
932 102.4
所以,每次我仍然正确地猜测出现最大值的位置,但是你假设它总是在你的数据的第102行(形状1024, 1024
)附近。
您的曲线拟合结果与我的差异很大,这一点不足为奇:
>>> print(fitparams_you)
[array([ -1.640e-07, 1.024e+02, 1.000e+01, 2.046e-10]),
array([ -1.640e-07, 1.024e+02, 1.000e+01, 2.046e-10]),
array([ -1.640e-07, 1.024e+02, 1.000e+01, 2.046e-10])]
只需翻转专栏即可轻松解决问题:
popt, pcov = optimize.curve_fit(one_gaussian, datax, column[::-1], p0=your_guess)
或者您可以尝试使用argmax
等技巧来提高算法的稳健性。