我收藏了30亿份文件。每个文档如下所示:
"_id" : ObjectId("54c1a013715faf2cc0047c77"),
"service_type" : "JE",
"receiver_id" : NumberLong("865438083645"),
"time" : ISODate("2012-12-05T23:07:36Z"),
"duration" : 24,
"service_description" : "NQ",
"receiver_cell_id" : null,
"location_id" : "658_55525",
"caller_id" : NumberLong("475035504705")
我想获得不同用户的列表(他们至少应该作为来电者出现一次' caller_id'),他们的计数(每个用户在集合中作为来电者或接收者出现的次数)以及如果他们是呼叫者的位置计数(即每个用户的每个location_id的计数)。
我想最终得到以下结论:
"number_of_records" : 20,
"locations" : [{location_id: 658_55525, count:5}, {location_id: 840_5425, count:15}],
"user" : NumberLong("475035504705")
答案 0 :(得分:2)
对结果使用聚合:
db.<collection>.aggregate([
{ $group : { _id : { user: "$caller_id", localtion: '$location_id'} , count : { $sum : 1} } },
{ $project : { _id : 0, _id : '$_id.user', location : '$_id.localtion', count : '$count' } },
{ $group : { _id : '$_id', 'locations' : { $push : { location_id : '$location', count : '$count' } }, number_of_records : {$sum : '$count'} } },
{ $project : { _id : 0, user : '$_id', locations : '$locations', number_of_records : '$number_of_records'} },
{ $out : 'outputCollection'},
])
输出将是:
{
"0" : {
"locations" : [
{
"location_id" : "840_5425",
"count" : 8
},
{
"location_id" : "658_55525",
"count" : 5
}
],
"number_of_records" : 13,
"user" : NumberLong(475035504705)
}
}
使用allowDiskUse
更新
var pipe = [
{ $group : { _id : { user: "$caller_id", localtion: '$location_id'} , count : { $sum : 1} } },
{ $project : { _id : 0, _id : '$_id.user', location : '$_id.localtion', count : '$count' } },
{ $group : { _id : '$_id', 'locations' : { $push : { location_id : '$location', count : '$count' } }, number_of_records : {$sum : '$count'} } },
{ $project : { _id : 0, user : '$_id', locations : '$locations', number_of_records : '$number_of_records'} },
{ $out : 'outputCollection'},
];
db.runCommand(
{ aggregate: "collection",
pipeline: pipe,
allowDiskUse: true
}
)
答案 1 :(得分:1)
map-reduce
解决方案更适合此而非aggregation
管道,因为它避免了两个unwinds
。如果您可以通过一次展开来推出聚合解决方案,那就是它。但是下面的map-reduce解决方案是一种方法,尽管你需要根据大数据来衡量它的运行时间,看看它是否适合你。
map
功能:
var map = function(){
emit(this.caller_id,
{locs:[{"location_id":this.location_id,"count":1}]});
}
reduce
功能:
var reduce = function(key,values){
var result = {locs:[]};
var locations = {};
values.forEach(function(value){
value.locs.forEach(function(loc){
if(!locations[loc.location_id]){
locations[loc.location_id] = loc.count;
}
else{
locations[loc.location_id]++;
}
})
})
Object.keys(locations).forEach(function(k){
result.locs.push({"location_id":k,"count":locations[k]});
})
return result;
}
finalize
功能:
var finalize = function(key,value){
var total = 0;
value.locs.forEach(function(loc){
total += loc.count;
})
return {"total":total,"locs":value.locs};
}
调用map-reduce:
db.collection.mapReduce(map,reduce,{"out":"t1","finalize":finalize});
map-reduce生成输出后聚合结果。
db.t1.aggregate([
{$project:{"_id":0,
"number_of_records":"$value.total",
"locations":"$value.locs","user":"$_id"}}
])
样本o / p:
{
"number_of_records" : 3,
"locations" : [
{
"location_id" : "658_55525",
"count" : 1
},
{
"location_id" : "658_55525213",
"count" : 2
}
],
"user" : 2
}
{
"number_of_records" : 1,
"locations" : [
{
"location_id" : "658_55525",
"count" : 1
}
],
"user" : NumberLong("475035504705")
}
map-reduce java脚本代码应该是自解释的。