线性回归并将结果存储在数据框中

时间:2015-01-19 17:03:28

标签: r linear-regression lm

我正在对数据框中的某些变量进行线性回归。我希望能够通过分类变量对线性回归进行子集化,对每个分类变量运行线性回归,然后将t-stats存储在数据框中。如果可能的话,我想在没有循环的情况下这样做。

以下是我正在尝试做的一个示例:

  a<-  c("a","a","a","a","a",
         "b","b","b","b","b",
         "c","c","c","c","c")     
  b<-  c(0.1,0.2,0.3,0.2,0.3,
         0.1,0.2,0.3,0.2,0.3,
         0.1,0.2,0.3,0.2,0.3)
  c<-  c(0.2,0.1,0.3,0.2,0.4,
         0.2,0.5,0.2,0.1,0.2,
         0.4,0.2,0.4,0.6,0.8)
      cbind(a,b,c)

我可以从运行以下线性回归开始,并非常轻松地拉出t统计量:

  summary(lm(b~c))$coefficients[2,3]

但是,我希望能够在列a为a,b或c时运行回归。我想将t-stats存储在一个如下所示的表中:

variable t-stat
a        0.9
b        2.4
c        1.1

希望这是有道理的。如果您有任何建议,请告诉我!

5 个答案:

答案 0 :(得分:10)

以下是使用dplyr包中的tidy()broom的解决方案。 tidy()会将各种统计模型输出(例如lmglmanova等)转换为整洁的数据框。

library(broom)
library(dplyr)

data <- data_frame(a, b, c)

data %>% 
  group_by(a) %>% 
  do(tidy(lm(b ~ c, data = .))) %>% 
  select(variable = a, t_stat = statistic) %>% 
  slice(2)

#   variable     t_stat
# 1        a  1.6124515
# 2        b -0.1369306
# 3        c  0.8000000  

或者提取两者,拦截的t统计量和斜率项:

data %>% 
  group_by(a) %>% 
  do(tidy(lm(b ~ c, data = .))) %>% 
  select(variable = a, term, t_stat = statistic)

#   variable        term     t_stat
# 1        a (Intercept)  1.2366939
# 2        a           c  1.6124515
# 3        b (Intercept)  2.6325081
# 4        b           c -0.1369306
# 5        c (Intercept)  1.4572335
# 6        c           c  0.8000000

答案 1 :(得分:5)

您可以使用lmList包中的nlme功能将lm应用于数据子集:

# the data
df <- data.frame(a, b, c)

library(nlme)
res <- lmList(b ~ c | a, df, pool = FALSE)
coef(summary(res))

输出:

, , (Intercept)

   Estimate Std. Error  t value   Pr(>|t|)
a 0.1000000 0.08086075 1.236694 0.30418942
b 0.2304348 0.08753431 2.632508 0.07815663
c 0.1461538 0.10029542 1.457233 0.24110393

, , c

     Estimate Std. Error    t value  Pr(>|t|)
a  0.50000000  0.3100868  1.6124515 0.2052590
b -0.04347826  0.3175203 -0.1369306 0.8997586
c  0.15384615  0.1923077  0.8000000 0.4821990

如果只想要t值,可以使用以下命令:

coef(summary(res))[, "t value", -1]
#          a          b          c 
#  1.6124515 -0.1369306  0.8000000  

答案 2 :(得分:4)

以下是plyr包和ddply()的投票。

plyrFunc <- function(x){
  mod <- lm(b~c, data = x)
  return(summary(mod)$coefficients[2,3])
  }

tStats <- ddply(dF, .(a), plyrFunc)
tStats
  a         V1
1 a  1.6124515
2 b -0.1369306
3 c  0.6852483

答案 3 :(得分:3)

使用split对数据进行子集化,并按lapply

进行循环
dat <- data.frame(b,c)
dat_split <- split(x = dat, f = a)
res <- sapply(dat_split, function(x){
  summary(lm(b~c, data = x))$coefficients[2,3]
})

根据您的需求重塑结果:

data.frame(variable = names(res), "t-stat" = res) 

  variable     t.stat
a        a  1.6124515
b        b -0.1369306
c        c  0.8000000

答案 4 :(得分:2)

你可以这样做:

a<-  c("a","a","a","a","a",
       "b","b","b","b","b",
       "c","c","c","c","c")     
b<-  c(0.1,0.2,0.3,0.2,0.3,
       0.1,0.2,0.3,0.2,0.3,
       0.1,0.2,0.3,0.2,0.3)
c<-  c(0.2,0.1,0.3,0.2,0.4,
       0.2,0.5,0.2,0.1,0.2,
       0.4,0.2,0.4,0.6,0.8)
df <- data.frame(a,b,c)


t.stats <- t(data.frame(lapply(c('a','b','c'), 
             function(x) summary(lm(b~c,data=df[df$a==x,]))$coefficients[2,3])))
colnames(t.stats) <- 't-stat'
rownames(t.stats) <- c('a','b','c')

输出:

> t.stats
      t-stat
a  1.6124515
b -0.1369306
c  0.8000000

除非我弄错了,否则你输出的值不正确。

或者:

t.stats <- data.frame(t.stats)
t.stats$variable <- rownames(t.stats)

> t.stats[,c(2,1)]
  variable     t.stat
a        a  1.6124515
b        b -0.1369306
c        c  0.8000000

如果你想要一个data.frame和一个单独的列。