如何提高二进制数据转换的Dart性能?

时间:2015-01-19 14:16:18

标签: performance dart data-conversion

为更大的德国公司Future Technologies Group做一些咨询工作我已经向Dart移植了大约6000行Java服务器端软件。这应该有助于回答Dart是否可以有效地在服务器上使用的问题。 (由于搜索了为客户端和服务器端编程使用一种语言的优势,本身将为Dart开绿灯。)

了解Dart(我非常喜欢与之合作)让我期望相对于Java的性能损失为30-50%但是在任何情况下都不会低于100%(慢两倍),这是截止上面提到的决策过程。

港口进展顺利。我学到了很多。单元测试很好。但是性能结果非常糟糕......与Java程序相比总体上要慢一半。

分析代码揭示了两个主要元凶:数据转换和文件I / O.也许我做错了什么?在我回到我的客户并取消他们的Dart研究之前,我想搜索一些关于如何改进的建议。让我们从数据转换开始,将原生Dart数据类型转换为各种二进制格式,可用于有效传输和存储数据。

通常这些转换很简单且非常快,因为没有任何内容真正从使用的内部格式转换而是主要存储在缓冲区中。我创建了一个基准程序,它以某种方式反映了我的程序中这些转换的典型用法:

import 'dart:typed_data';
import 'package:benchmark_harness/benchmark_harness.dart';

// Create a new benchmark by extending BenchmarkBase
class ConversionBenchmark extends BenchmarkBase {

  Uint8List result;

  ConversionBenchmark() : super("Conversion");

  // The benchmark code.
  void run() {
    const int BufSize = 262144; // 256kBytes
    const int SetSize = 64;     // one "typical" set of data, gets repeated
    ByteData buffer = new ByteData(BufSize);
    double doubleContent = 0.0; // used to simulate double content
    int intContent = 0;         // used to simulate int content
    int offset = 0;
    for (int j = 0; j < buffer.lengthInBytes / SetSize; j++) {
      // The following represents some "typical" conversion mix:
      buffer.setFloat64(offset, doubleContent); offset += 8; doubleContent += 0.123;
      for (int k = 0; k < 8; k++) { // main use case
        buffer.setFloat32(offset, doubleContent); offset += 4; doubleContent += 0.123;
      }
      buffer.setInt32(offset, intContent); offset += 4; intContent++;
      buffer.setInt32(offset, intContent); offset += 4; intContent++;
      buffer.setInt16(offset, intContent); offset += 2; intContent++;
      buffer.setInt16(offset, intContent); offset += 2; intContent++;
      buffer.setInt8(offset, intContent); offset += 1; intContent++;
      buffer.setInt8(offset, intContent); offset += 1; intContent++;
      buffer.buffer.asUint8List(offset).setAll(0, "AsciiStrng".codeUnits); offset += 10;
        // [ByteData] knows no other mechanism to transfer ASCII strings in
      assert((offset % SetSize) == 0); // ensure the example content fits [SetSize] bytes
    }
    result = buffer.buffer.asUint8List(); // only this can be used for further processing
  }
}

main() {
  new ConversionBenchmark().report();
}

它基于https://github.com/dart-lang/benchmark_harness的基准线束。为了进行比较,我使用了基于https://github.com/bono8106/benchmark_harness_java的Dart基准线束端口的以下Java程序:

package ylib.tools;

import java.nio.ByteBuffer;

public class ConversionBenchmark extends BenchmarkBase {

  public ByteBuffer result;

  public ConversionBenchmark() { super("Conversion"); }

  // The benchmark code.
  @Override protected void run() {
    final int BufSize = 262144; // 256kBytes
    final int SetSize = 64;     // one "typical" set of data, gets repeated
    ByteBuffer buffer = ByteBuffer.allocate(BufSize);
    double doubleContent = 0.0; // used to simulate double content
    int intContent = 0;         // used to simulate int content
    for (int j = 0; j < (buffer.capacity() / SetSize); j++) {
      // The following represents some "typical" conversion mix:
      buffer.putDouble(doubleContent); doubleContent += 0.123;
      for (int k = 0; k < 8; k++) { // main use case
        buffer.putFloat((float)doubleContent); doubleContent += 0.123;
      }
      buffer.putInt(intContent); intContent++;
      buffer.putInt(intContent); intContent++;
      buffer.putShort((short)intContent); intContent++;
      buffer.putShort((short)intContent); intContent++;
      buffer.put((byte)intContent); intContent++;
      buffer.put((byte)intContent); intContent++;
      buffer.put("AsciiStrng".getBytes());
      //assert((buffer.position() % SetSize) == 0); // ensure the example content fits [SetSize] bytes
    }
    buffer.flip(); // needed for further processing
    result = buffer; // to avoid the compiler optimizing away everything
  }

  public static void main(String[] args) {
    new ConversionBenchmark().report();
  }
}

Java代码的运行速度几乎比英特尔Windows 7机器上的Dart代码快10倍。两者都在各自的VM上以生产模式运行。

代码中是否存在明显错误?或者有不同的Dart课程可以完成这项工作吗?有关为什么Dart在这些简单的转换中速度如此之慢的任何解释?或者我对Dart VM性能有完全错误的期望吗?

2 个答案:

答案 0 :(得分:12)

与直接类型阵列访问相比,Dart VM的字节数据方法(ByteData.setXYZByteData.getXYZ)的性能确实很差。我们开始研究这个问题,初步结果很有希望[1]。

与此同时,您可以使用类型化数组(在[2]处完整代码)将您自己的转换滚动到大端,从而解决这种不幸的性能回归:

 
/// Writer wraps a fixed size Uint8List and writes values into it using
/// big-endian byte order.
class Writer {
  /// Output buffer.
  final Uint8List out;

  /// Current position within [out].
  var position = 0;

  Writer._create(this.out);

  factory Writer(size) {
    final out = new Uint8List(size);
    if (Endianness.HOST_ENDIAN == Endianness.LITTLE_ENDIAN) {
      return new _WriterForLEHost._create(out);
    } else {
      return new _WriterForBEHost._create(out);
    }
  }

  writeFloat64(double v);

}

/// Lists used for data convertion (alias each other).
final Uint8List _convU8 = new Uint8List(8);
final Float32List _convF32 = new Float32List.view(_convU8.buffer);
final Float64List _convF64 = new Float64List.view(_convU8.buffer);

/// Writer used on little-endian host.
class _WriterForLEHost extends Writer {
  _WriterForLEHost._create(out) : super._create(out);

  writeFloat64(double v) {
    _convF64[0] = v;
    out[position + 7] = _convU8[0];
    out[position + 6] = _convU8[1];
    out[position + 5] = _convU8[2];
    out[position + 4] = _convU8[3];
    out[position + 3] = _convU8[4];
    out[position + 2] = _convU8[5];
    out[position + 1] = _convU8[6];
    out[position + 0] = _convU8[7];
    position += 8;
  }
}

根据您的测试对此手动转换进行基准测试可以获得大约6倍的改进:

import 'dart:typed_data';
import 'package:benchmark_harness/benchmark_harness.dart';
import 'writer.dart';

class ConversionBenchmarkManual extends BenchmarkBase {

  Uint8List result;

  ConversionBenchmarkManual() : super("Conversion (MANUAL)");

  // The benchmark code.
  void run() {
    const int BufSize = 262144; // 256kBytes
    const int SetSize = 64;     // one "typical" set of data, gets repeated

    final w = new Writer(BufSize);

    double doubleContent = 0.0; // used to simulate double content
    int intContent = 0;         // used to simulate int content
    int offset = 0;
    for (int j = 0; j < (BufSize / SetSize); j++) {
      // The following represents some "typical" conversion mix:
      w.writeFloat64(doubleContent); doubleContent += 0.123;
      for (int k = 0; k < 8; k++) { // main use case
        w.writeFloat32(doubleContent); doubleContent += 0.123;
      }
      w.writeInt32(intContent); intContent++;
      w.writeInt32(intContent); intContent++;
      w.writeInt16(intContent); intContent++;
      w.writeInt16(intContent); intContent++;
      w.writeInt8(intContent);  intContent++;
      w.writeInt8(intContent);  intContent++;
      w.writeString("AsciiStrng");
      assert((offset % SetSize) == 0); // ensure the example content fits [SetSize] bytes
    }
    result = w.out; // only this can be used for further processing
  }
}

[1] https://code.google.com/p/dart/issues/detail?id=22107

[2] https://gist.github.com/mraleph/4eb5ccbb38904075141e

答案 1 :(得分:4)

我想补充一些关于我如何最终解决性能问题以及结果如何的细节。

首先,我使用了Vyacheslav Egorov的postet方法,并从中开发了我自己的数据转换器类,它提供了双向转换。它仍然不是生产代码,但它对我的服务器软件端口非常有效,因此我在下面添加了它。我有意将[buffer]保存为公共变量。这可能无法实现完美的封装,但可以轻松直接写入和读取缓冲区,例如:通过[RandomAccessFile.readInto]和[RandomAccessFile.writeFrom]。一切都平淡有效!

事实证明,这些数据转换的主要原因是缓慢的初始性能比Java版慢七倍。随着变化,性能差距大幅缩小。 6000线服务器应用程序的Dart版本现在仅落后于Java版本约30%。比具有如此灵活的打字概念的语言更好。这将使Dart在未来的技术决策中处于有利地位。

在我看来,为客户端和服务器应用程序提供一种语言可能是Dart的一个非常好的论据。

这里有用于此项目的数据转换器的代码:

part of ylib;

/// [DataConverter] wraps a fixed size [Uint8List] and converts values from and into it
/// using big-endian byte order.
///
abstract class DataConverter {
  /// Buffer.
  final Uint8List buffer;

  /// Current position within [buffer].
  int _position = 0;

  DataConverter._create(this.buffer);

  /// Creates the converter with its associated [buffer].
  ///
  factory DataConverter(size) {
    final out = new Uint8List(size);
    if (Endianness.HOST_ENDIAN == Endianness.LITTLE_ENDIAN) {
      return new _ConverterForLEHost._create(out);
    } else {
      return new _ConverterForBEHost._create(out);
    }
  }

  int get length => buffer.length;

  int get position => _position;

  set position(int position) {
    if ((position < 0) || (position > buffer.lengthInBytes)) throw new ArgumentError(position);
    _position = position;
  }

  double getFloat64();

  putFloat64(double v);

  double getFloat32();

  putFloat32(double v);

  static const int _MaxSignedInt64plus1 = 9223372036854775808;
  static const int _MaxSignedInt32plus1 = 2147483648;
  static const int _MaxSignedInt16plus1 = 32768;
  static const int _MaxSignedInt8plus1 = 128;

  int getInt64() {
    int v =
      buffer[_position + 7] | (buffer[_position + 6] << 8) | (buffer[_position + 5] << 16) |
      (buffer[_position + 4] << 24) | (buffer[_position + 3] << 32) |
      (buffer[_position + 2] << 40) | (buffer[_position + 1] << 48) | (buffer[_position] << 56);
    _position += 8;
    if (v >= _MaxSignedInt64plus1) v -= 2 * _MaxSignedInt64plus1;
    return v;
  }

  putInt64(int v) {
    assert((v < _MaxSignedInt64plus1) && (v >= -_MaxSignedInt64plus1));
    buffer[_position + 7] = v;
    buffer[_position + 6] = (v >> 8);
    buffer[_position + 5] = (v >> 16);
    buffer[_position + 4] = (v >> 24);
    buffer[_position + 3] = (v >> 32);
    buffer[_position + 2] = (v >> 40);
    buffer[_position + 1] = (v >> 48);
    buffer[_position + 0] = (v >> 56);
    _position += 8;
  }

  int getInt32() {
    int v = buffer[_position + 3] | (buffer[_position + 2] << 8) | (buffer[_position + 1] << 16) |
            (buffer[_position] << 24);
    _position += 4;
    if (v >= _MaxSignedInt32plus1) v -= 2 * _MaxSignedInt32plus1;
    return v;
  }

  putInt32(int v) {
    assert((v < _MaxSignedInt32plus1) && (v >= -_MaxSignedInt32plus1));
    buffer[_position + 3] = v;
    buffer[_position + 2] = (v >> 8);
    buffer[_position + 1] = (v >> 16);
    buffer[_position + 0] = (v >> 24);
    _position += 4;
  }

//  The following code which uses the 'double' conversion methods works but is about 50% slower!
//
//  final Int32List _convI32 = new Int32List.view(_convU8.buffer);
//
//  int getInt32() {
//    _convU8[0] = out[_position + 0]; _convU8[1] = out[_position + 1];
//    _convU8[2] = out[_position + 2]; _convU8[3] = out[_position + 3];
//    _position += 4;
//    return _convI32[0];
//  }
//
//  putInt32(int v) {
//    _convI32[0] = v;
//    out[_position + 0] = _convU8[0]; out[_position + 1] = _convU8[1];
//    out[_position + 2] = _convU8[2]; out[_position + 3] = _convU8[3];
//    _position += 4;
//  }

  int getInt16() {
    int v = buffer[_position + 1] | (buffer[_position] << 8);
    _position += 2;
    if (v >= _MaxSignedInt16plus1) v -= 2 * _MaxSignedInt16plus1;
    return v;
  }

  putInt16(int v) {
    assert((v < _MaxSignedInt16plus1) && (v >= -_MaxSignedInt16plus1));
    buffer[_position + 1] = v;
    buffer[_position + 0] = (v >> 8);
    _position += 2;
  }

  int getInt8() {
    int v = buffer[_position++];
    if (v >= _MaxSignedInt8plus1) v -= 2 * _MaxSignedInt8plus1;
    return v;
  }

  putInt8(int v) {
    assert((v < _MaxSignedInt8plus1) && (v >= -_MaxSignedInt8plus1));
    buffer[_position] = v;
    _position++;
  }

  String getString(int length) {
    String s = new String.fromCharCodes(buffer, _position, _position + length);
    _position += length;
    return s;
  }

  putString(String str) {
    buffer.setAll(_position, str.codeUnits);
    _position += str.codeUnits.length;
  }
}

/// Lists used for data convertion (alias each other).
final Uint8List _convU8 = new Uint8List(8);
final Float32List _convF32 = new Float32List.view(_convU8.buffer);
final Float64List _convF64 = new Float64List.view(_convU8.buffer);

/// Writer used on little-endian host.
class _ConverterForLEHost extends DataConverter {
  _ConverterForLEHost._create(out) : super._create(out);

  double getFloat64() {
    _convU8[0] = buffer[_position + 7]; _convU8[1] = buffer[_position + 6];
    _convU8[2] = buffer[_position + 5]; _convU8[3] = buffer[_position + 4];
    _convU8[4] = buffer[_position + 3]; _convU8[5] = buffer[_position + 2];
    _convU8[6] = buffer[_position + 1]; _convU8[7] = buffer[_position + 0];
    _position += 8;
    return _convF64[0];
  }

  putFloat64(double v) {
    _convF64[0] = v;
    buffer[_position + 7] = _convU8[0]; buffer[_position + 6] = _convU8[1];
    buffer[_position + 5] = _convU8[2]; buffer[_position + 4] = _convU8[3];
    buffer[_position + 3] = _convU8[4]; buffer[_position + 2] = _convU8[5];
    buffer[_position + 1] = _convU8[6]; buffer[_position + 0] = _convU8[7];
    _position += 8;
  }

  double getFloat32() {
    _convU8[0] = buffer[_position + 3]; _convU8[1] = buffer[_position + 2];
    _convU8[2] = buffer[_position + 1]; _convU8[3] = buffer[_position + 0];
    _position += 4;
    return _convF32[0];
  }

  putFloat32(double v) {
    _convF32[0] = v;
    assert(_convF32[0].isFinite || !v.isFinite); // overflow check
    buffer[_position + 3] = _convU8[0]; buffer[_position + 2] = _convU8[1];
    buffer[_position + 1] = _convU8[2]; buffer[_position + 0] = _convU8[3];
    _position += 4;
  }
}


/// Writer used on the big-endian host.
class _ConverterForBEHost extends DataConverter {
  _ConverterForBEHost._create(out) : super._create(out);

  double getFloat64() {
    _convU8[0] = buffer[_position + 0]; _convU8[1] = buffer[_position + 1];
    _convU8[2] = buffer[_position + 2]; _convU8[3] = buffer[_position + 3];
    _convU8[4] = buffer[_position + 4]; _convU8[5] = buffer[_position + 5];
    _convU8[6] = buffer[_position + 6]; _convU8[7] = buffer[_position + 7];
    _position += 8;
    return _convF64[0];
  }

  putFloat64(double v) {
    _convF64[0] = v;
    buffer[_position + 0] = _convU8[0]; buffer[_position + 1] = _convU8[1];
    buffer[_position + 2] = _convU8[2]; buffer[_position + 3] = _convU8[3];
    buffer[_position + 4] = _convU8[4]; buffer[_position + 5] = _convU8[5];
    buffer[_position + 6] = _convU8[6]; buffer[_position + 7] = _convU8[7];
    _position += 8;
  }

  double getFloat32() {
    _convU8[0] = buffer[_position + 0]; _convU8[1] = buffer[_position + 1];
    _convU8[2] = buffer[_position + 2]; _convU8[3] = buffer[_position + 3];
    _position += 4;
    return _convF32[0];
  }

  putFloat32(double v) {
    _convF32[0] = v;
    assert(_convF32[0].isFinite || !v.isFinite); // overflow check
    buffer[_position + 0] = _convU8[0]; buffer[_position + 1] = _convU8[1];
    buffer[_position + 2] = _convU8[2]; buffer[_position + 3] = _convU8[3];
    _position += 4;
  }
}

一个非常小的基本测试单元:

import 'package:ylib/ylib.dart';
import 'package:unittest/unittest.dart';

// -------- Test program for [DataConverter]: --------

void main() {
  DataConverter dc = new DataConverter(100);
  test('Float64', () {
    double d1 = 1.246e370, d2 = -0.0000745687436849437;
    dc.position = 0;
    dc..putFloat64(d1)..putFloat64(d2);
    dc.position = 0; // reset it
    expect(dc.getFloat64(), d1);
    expect(dc.getFloat64(), d2);
  });
  test('Float32', () {
    double d1 = -0.43478e32, d2 = -0.0;
    dc.position = 0;
    dc..putFloat32(d1)..putFloat32(d2);
    dc.position = 0; // reset it
    expect(dc.getFloat32(), closeTo(d1, 1.7e24));
    expect(dc.getFloat32(), d2);
  });
  test('Int64', () {
    int i1 = 9223372036854775807, i2 = -22337203685477580;
    dc.position = 3;
    dc..putInt64(i1)..putInt64(i2);
    dc.position = 3; // reset it
    expect(dc.getInt64(), i1);
    expect(dc.getInt64(), i2);
  });
  test('Int32_16_8', () {
    int i1 = 192233720, i2 = -7233, i3 = 32, i4 = -17;
    dc.position = 0;
    dc..putInt32(i1)..putInt16(i2)..putInt8(i3)..putInt32(i4);
    dc.position = 0; // reset it
    expect(dc.getInt32(), i1);
    expect(dc.getInt16(), i2);
    expect(dc.getInt8(), i3);
    expect(dc.getInt32(), i4);
  });
  test('String', () {
    String s1 = r"922337203!§$%&()=?68547/\75807", s2 = "-22337203685477580Anton";
    int i1 = -33;
    dc.position = 33;
    dc..putString(s1)..putInt8(i1)..putString(s2);
    dc.position = 33; // reset it
    expect(dc.getString(s1.length), s1);
    expect(dc.getInt8(), i1);
    expect(dc.getString(s2.length), s2);
  });
}