我正在学习LCA并遇到了Tutorial。我无法理解它的O(log n)方法。
首先,让我们计算一个表P[1,N][1,logN]
,其中P[i][j]
是2^j
- i
的祖先。为了计算这个值,我们可以使用以下递归:
预处理功能
void process3(int N, int T[MAXN], int P[MAXN][LOGMAXN])
{
int i, j;
//we initialize every element in P with -1
for (i = 0; i < N; i++)
for (j = 0; 1 << j < N; j++)
P[i][j] = -1;
//the first ancestor of every node i is T[i]
for (i = 0; i < N; i++)
P[i][0] = T[i];
//bottom up dynamic programing
for (j = 1; 1 << j < N; j++)
for (i = 0; i < N; i++)
if (P[i][j - 1] != -1)
P[i][j] = P[P[i][j - 1]][j - 1];
}
查询功能
int query(int N, int P[MAXN][LOGMAXN], int T[MAXN],
int L[MAXN], int p, int q)
{
int tmp, log, i;
//if p is situated on a higher level than q then we swap them
if (L[p] < L[q])
tmp = p, p = q, q = tmp;
//we compute the value of [log(L[p)]
for (log = 1; 1 << log <= L[p]; log++);
log--;
//we find the ancestor of node p situated on the same level
//with q using the values in P
for (i = log; i >= 0; i--)
if (L[p] - (1 << i) >= L[q])
p = P[p][i];
if (p == q)
return p;
//we compute LCA(p, q) using the values in P
for (i = log; i >= 0; i--)
if (P[p][i] != -1 && P[p][i] != P[q][i])
p = P[p][i], q = P[q][i];
return T[p];
}
请帮助我理解概念以及如何获得递归公式P[P[i][j-1][j-1]
。