我正在尝试实施KMeans using Apache Spark
。
val data = sc.textFile(irisDatasetString)
val parsedData = data.map(_.split(',').map(_.toDouble)).cache()
val clusters = KMeans.train(parsedData,3,numIterations = 20)
我得到以下错误:
error: overloaded method value train with alternatives:
(data: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector],k: Int,maxIterations: Int,runs: Int)org.apache.spark.mllib.clustering.KMeansModel <and>
(data: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector],k: Int,maxIterations: Int)org.apache.spark.mllib.clustering.KMeansModel <and>
(data: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector],k: Int,maxIterations: Int,runs: Int,initializationMode: String)org.apache.spark.mllib.clustering.KMeansModel
cannot be applied to (org.apache.spark.rdd.RDD[Array[Double]], Int, numIterations: Int)
val clusters = KMeans.train(parsedData,3,numIterations = 20)
所以我尝试将Array [Double]转换为Vector,如here
所示scala> val vectorData: Vector = Vectors.dense(parsedData)
我收到了以下错误:
error: type Vector takes type parameters
val vectorData: Vector = Vectors.dense(parsedData)
^
error: overloaded method value dense with alternatives:
(values: Array[Double])org.apache.spark.mllib.linalg.Vector <and>
(firstValue: Double,otherValues: Double*)org.apache.spark.mllib.linalg.Vector
cannot be applied to (org.apache.spark.rdd.RDD[Array[Double]])
val vectorData: Vector = Vectors.dense(parsedData)
所以我推断 org.apache.spark.rdd.RDD[Array[Double]]
与Array [Double]不一样
如何以 org.apache.spark.rdd.RDD[Array[Double]]
继续处理我的数据?或者我如何转换 org.apache.spark.rdd.RDD[Array[Double]] to Array[Double]
?
答案 0 :(得分:6)
KMeans.train
期待RDD[Vector]
而不是RDD[Array[Double]]
。在我看来,你需要做的就是改变
val parsedData = data.map(_.split(',').map(_.toDouble)).cache()
到
val parsedData = data.map(x => Vectors.dense(x.split(',').map(_.toDouble))).cache()