如何证明左递归语法不在LL(1)中使用解析表

时间:2014-12-30 10:42:31

标签: parsing compiler-construction automation formal-languages ll

我有一个语法,并想证明它不在LL(1)中:

S->SA|A
A->a

由于它是一个左递归语法,为了找到第一个和后面的集合,我删除了左递归并得到了:

S->AS'
S'->AS'|Empty
A->a

first of A={a}      follow of S={$}
first of s'={a,ε}   follow of S'={$}
first of S={a}       follow of A={a,$}

但是当我填写解析表时,我没有得到任何包含2个条目的单元格。那么如何证明给定的语法不在LL(1)中呢?

2 个答案:

答案 0 :(得分:1)

首先,您要找到FIRST并关注已删除左递归的语法。因此,当然,如果您尝试创建LL(1)解析表,则不会有任何2个条目,因为删除了左递归并且语法是明确的。

语法[S-> SA | A A-> a]不是LL(1),因为存在左递归。要通过构造LL(1)解析表来证明它,你需要在不修改它的情况下找到这个语法的FIRST和FOLLOW。

从底部A-> a开始,给出FIRST(A)= {a}

S-> A,给出FIRST(S)= FIRST(A)= {a}

S-> SA,给出FIRST(S)= FIRST(S),我认为问题出现在这里。在这种递归调用中,规则表示计算FIRST(S)直到它改变,即直到元素被加入FIRST(S)继续计算。一旦它停止改变,你就回答

因此FIRST(S)= FIRST(S)= {a},您可以多次调用FIRST(S),它不会改变。 解析表:

      a
------------ 
S   S->SA
    S->A
-------------
A   A->a 

因此(S,a)有两个条目。因此,它不是LL(1)

答案 1 :(得分:0)

对于此左递归语法:

S->SA|A
A->a

我们可以消除左递归,因为它会产生与上一个左递归语法相同的结果。

S->AS'
S'->AS'|Empty
A->a

first of A={a}      follow of S={$}
first of s'={a,ε}   follow of S'={$}
first of S={a}       follow of A={a,$}

因此,实际上,对于上述情况,我们正在检查LL(1)是否有修改的Left递归语法(相同)。 但是要遵循左递归语法:-

E -> E+n/n

我们无法修改该语法,它将改变+运算符的关联性。

因此,我们唯一要做的就是检查LL(1)而不修改

(E->E+n/n ).

因此,我们可以说E->E+n/n不是LL(1)