如果iterable抛出错误,imap_unordered()会挂起

时间:2014-12-18 15:51:15

标签: python multiprocessing

考虑文件sample.py包含以下代码:

from multiprocessing import Pool

def sample_worker(x):
    print "sample_worker processes item", x
    return x

def get_sample_sequence():
    for i in xrange(2,30):
        if i % 10 == 0:
            raise Exception('That sequence is corrupted!')
        yield i

if __name__ == "__main__":
    pool = Pool(24)
    try:
        for x in pool.imap_unordered(sample_worker, get_sample_sequence()):
            print "sample_worker returned value", x
    except:
        print "Outer exception caught!"
    pool.close()
    pool.join()
    print "done"

当我执行它时,我得到以下输出:

Exception in thread Thread-2:
Traceback (most recent call last):
  File "C:\Python27\lib\threading.py", line 810, in __bootstrap_inner
    self.run()
  File "C:\Python27\lib\threading.py", line 763, in run
    self.__target(*self.__args, **self.__kwargs)
  File "C:\Python27\lib\multiprocessing\pool.py", line 338, in _handle_tasks
    for i, task in enumerate(taskseq):
  File "C:\Python27\lib\multiprocessing\pool.py", line 278, in <genexpr>
    self._taskqueue.put((((result._job, i, func, (x,), {})
  File "C:\Users\renat-nasyrov\Desktop\sample.py", line 10, in get_sample_sequence
    raise Exception('That sequence is corrupted!')
Exception: That sequence is corrupted!

之后,应用程序挂起。如何在没有挂断的情况下处理这种情况?

1 个答案:

答案 0 :(得分:2)

正如塞普提到的那样,你的缩进是(仍然)错误的。缩进yield语句,使i在其范围内。我不完全确定您的代码中实际发生了什么,但是产生一个超出范围的变量似乎不是一个好主意:

from multiprocessing import Pool

def sample_worker(x):
    print "sample_worker processes item", x
    return x

def get_sample_sequence():
    for i in xrange(2,30):
      if i % 10 == 0:
          raise Exception('That sequence is corrupted!')
      yield i # fixed

if __name__ == "__main__":
    pool = Pool(24)
    try:
        for x in pool.imap_unordered(sample_worker, get_sample_sequence()):
            print "sample_worker returned value", x
    except:
        print "Outer exception caught!"
    pool.close()
    pool.join()
    print "done"

要处理生成器中的异常,您可以使用这样的包装器:

import logging
def robust_generator():
    try:
        for i in get_sample_sequence():
            logging.debug("yield "+str(i))
            yield i
    except Exception, e:
        logging.exception(e)
        raise StopIteration()