我有一个看起来像这样的CSV文件:
"row ID","label","val"
"Row0","5",6
"Row1","",6
"Row2","",6
"Row3","5",7
"Row4","5",8
"Row5",,9
"Row6","nan",
"Row7","nan",
"Row8","nan",0
"Row9","nan",3
"Row10","nan",
所有引用的条目都是字符串。非引用条目是数字。空字段缺少值(NaN),引用的空字段仍应视为空字符串。 我试着用pandas read_csv读它,但是我不能按照我希望的方式使它工作......它仍然考虑到,"",和,作为NaN,而它'不适用于第一个。
d = pd.read_csv(csv_filename, sep=',', keep_default_na=False, na_values=[''], quoting = csv.QUOTE_NONNUMERIC)
有人可以帮忙吗?它有可能吗?
答案 0 :(得分:1)
您可以尝试使用numpy.genfromtxt
并指定missing_values
参数
http://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.html
答案 1 :(得分:0)
可能是这样的:
import pandas as pd
import csv
import numpy as np
d = pd.read_csv('test.txt', sep=',', keep_default_na=False, na_values=[''], quoting = csv.QUOTE_NONNUMERIC)
mask = d['label'] == 'nan'
d.label[mask] = np.nan
答案 2 :(得分:0)
我找到了一种方法来让它或多或少地起作用。我只是不知道,为什么我需要指定dtype = type(None)才能使它工作...非常欢迎对这段代码的评论!
import re
import pandas as pd
import numpy as np
# clear quoting characters
def filterTheField(s):
m = re.match(r'^"?(.*)?"$', s.strip())
if m:
return m.group(1)
else:
return np.nan
file = 'test.csv'
y = np.genfromtxt(file, delimiter = ',', filling_values = np.nan, names = True, dtype = type(None), converters = {'row_ID': filterTheField, 'label': filterTheField,'val': float})
d = pd.DataFrame(y)
print(d)