查找最大子阵列的标准方法是Kadene's algorithm。如果输入是大numpy数组,有没有比本机python实现更快的东西?
import timeit
setup = '''
import random
import numpy as np
def max_subarray(A):
max_so_far = max_ending_here = 0
for x in A:
max_ending_here = max(0, max_ending_here + x)
max_so_far = max(max_so_far, max_ending_here)
return max_so_far
B = np.random.randint(-100,100,size=100000)
'''
print min(timeit.Timer('max_subarray(B)',setup=setup).repeat(5, 100))
答案 0 :(得分:1)
在iPython笔记本中使用Cython进行的小测试(由于没有时间限制,似乎不适用于%%cython
环境:)
原始版本:
import numpy as np
B = np.random.randint(-100,100,size=100000)
def max_subarray(A):
max_so_far = max_ending_here = 0
for x in A:
max_ending_here = max(0, max_ending_here + x)
max_so_far = max(max_so_far, max_ending_here)
return max_so_far
import time
measurements = np.zeros(100, dtype='float')
for i in range(measurements.size):
a = time.time()
max_subarray(B)
measurements[i] = time.time() - a
print 'non-c:', measurements.min(), measurements.max(), measurements.mean()
Cython版:
%%cython
import numpy as np
cimport numpy as np
B = np.random.randint(-100,100,size=100000)
DTYPE = np.int
ctypedef np.int_t DTYPE_t
cdef DTYPE_t c_max_subarray(np.ndarray A):
# Type checking for safety
assert A.dtype == DTYPE
cdef DTYPE_t max_so_far = 0, max_ending_here = 0, x = 0
for x in A:
max_ending_here = max(0, max_ending_here + x)
max_so_far = max(max_so_far, max_ending_here)
return max_so_far
import time
measurements = np.zeros(100, dtype='float')
for i in range(measurements.size):
a = time.time()
c_max_subarray(B)
measurements[i] = time.time() - a
print 'Cython:', measurements.min(), measurements.max(), measurements.mean()
结果:
绝对值得注意的是,不需要太多努力就可以实现:)