我一直在研究包含def __mul__(self, other)
,def __rmul__(self, other)
和def derivative(self)
的多项式类很长一段时间但无济于事。有人可以告诉我它是如何完成的吗?注意,自身和其他系数的长度可以不同。到目前为止,我有这个:
class Polynomial(object):
def __init__(self, coeffs):
# if coeffs == [2,-3,5]: 2x**2-3*x+5
self.coeffs = coeffs
def almostEqual(d1, d2):
epsilon = 0.000001
return abs(d1 - d2) < epsilon
def firstNonZeroCoeff(self, coeffs):
coeffs = self.coeffs
for num in xrange(len(coeffs)): #loop through all coeffs
if coeffs[num]!=0: #check if is 0
return coeffs[num]
def degree(self):
return len(self.coeffs)-1
def coeff(self, power):
return self.coeffs[self.degree()-power]
def evalAt(self, x):
return sum([self.coeff(power)*x**power
for power in xrange(self.degree()+1)])
def __add__(self, other):
# First, made both coefficent lists the same length by nondestructively
# adding 0's to the front of the shorter one
(coeffs1, coeffs2) = (self.coeffs, other.coeffs)
if (len(coeffs1) > len(coeffs2)):
(coeffs1, coeffs2) = (coeffs2, coeffs1)
# Now, coeffs1 is shorter, so add 0's to its front
coeffs1 = [0]*(len(coeffs2)-len(coeffs1)) + coeffs1
# Now they are the same length, so add them to get the new coefficients
coeffs = [coeffs1[i] + coeffs2[i] for i in xrange(len(coeffs1))]
# And create the new Polynomial instance with these new coefficients
return Polynomial(coeffs)
非常感谢你!
答案 0 :(得分:1)
两个多项式的乘法将是嵌套循环。对于P1中的每个项,您需要将其系数乘以所有P2的系数。然后添加所有中间结果。您可以为乘法创建中间多项式。然后将它们全部加在一起。
有一个很好的例子here
首先使其正常工作,然后进行任何优化。祝你好运
答案 1 :(得分:0)
也许不是最漂亮的实现,但似乎有效
def derivative(self):
# Copy coefficeints to a new array
der = list(self.coeffs)
# (ax^n)' = (n)ax^(n-1)
# 1. ax^n -> ax^(n-1)
print der
der.pop(0)
print der
# 2. ax^(n-1) -> (n)ax^(n-1)
for n in range(1,self.degree()+1):
der[n-1] *= n
return Polynomial(der)