在阅读无穷无尽的文档并尝试理解opencv / javacv用于提取关键点的示例之后,使用一些DescriptorExtractors计算要素以将输入图像与一堆图像进行匹配,以查看输入图像是否是其中之一或部分是我认为,这些图像应该在计算它们之后存储Mat对象。
我将使用Emily Webb'代码作为示例:
String smallUrl =“rsz_our-mobile-planet-us-infographic_infographics_lg_unberela.jpg”; String largeUrl =“our-mobile-planet-us-infographic_infographics_lg.jpg”;
IplImage image = cvLoadImage(largeUrl,CV_LOAD_IMAGE_UNCHANGED );
IplImage image2 = cvLoadImage(smallUrl,CV_LOAD_IMAGE_UNCHANGED );
CvMat descriptorsA = new CvMat(null);
CvMat descriptorsB = new CvMat(null);
final FastFeatureDetector ffd = new FastFeatureDetector(40, true);
final KeyPoint keyPoints = new KeyPoint();
final KeyPoint keyPoints2 = new KeyPoint();
ffd.detect(image, keyPoints, null);
ffd.detect(image2, keyPoints2, null);
System.out.println("keyPoints.size() : "+keyPoints.size());
System.out.println("keyPoints2.size() : "+keyPoints2.size());
// BRISK extractor = new BRISK();
//BriefDescriptorExtractor extractor = new BriefDescriptorExtractor();
FREAK extractor = new FREAK();
extractor.compute(image, keyPoints, descriptorsA);
extractor.compute(image2, keyPoints2, descriptorsB);
System.out.println("descriptorsA.size() : "+descriptorsA.size());
System.out.println("descriptorsB.size() : "+descriptorsB.size());
DMatch dmatch = new DMatch();
//FlannBasedMatcher matcher = new FlannBasedMatcher();
//DescriptorMatcher matcher = new DescriptorMatcher();
BFMatcher matcher = new BFMatcher();
matcher.match(descriptorsA, descriptorsB, dmatch, null);
System.out.println(dmatch.capacity());
我的问题是: 如何在数据库中存储描述符A(或描述符B) - 在opencv-的java实现中? (它们是在extractor.compute(image,keyPoints,descriptorsA)之后获得的Mat个对象;)
我知道Mat对象在java实现中不是可序列化的对象,但是如果你想将图像与一组存档图像匹配,你必须提取存档的描述符并将它们存储在某些地方。用于功能..
答案 0 :(得分:4)
经过一些搜索后,我在http://answers.opencv.org/question/8873/best-way-to-store-a-mat-object-in-android/
中找到了一些链接虽然答案主要针对Android设备,并且参考了之前关于保存关键点的问题(Saving ORB feature vectors using OpenCV4Android (java API)),但答案是从Mat对象到xml和xml到Mat对象"在下面的代码似乎工作:
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.transform.OutputKeys;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;
import java.io.File;
import java.util.Locale;
import java.util.Scanner;
public class TaFileStorage {
// static
public static final int READ = 0;
public static final int WRITE = 1;
// varaible
private File file;
private boolean isWrite;
private Document doc;
private Element rootElement;
public TaFileStorage() {
file = null;
isWrite = false;
doc = null;
rootElement = null;
}
// read or write
public void open(String filePath, int flags ) {
try {
if( flags == READ ) {
open(filePath);
}
else {
create(filePath);
}
} catch(Exception e) {
e.printStackTrace();
}
}
// read only
public void open(String filePath) {
try {
file = new File(filePath);
if( file == null || file.isFile() == false ) {
System.err.println("Can not open file: " + filePath );
}
else {
isWrite = false;
doc = DocumentBuilderFactory.newInstance().newDocumentBuilder().parse(file);
doc.getDocumentElement().normalize();
}
} catch(Exception e) {
e.printStackTrace();
}
}
// write only
public void create(String filePath) {
try {
file = new File(filePath);
if( file == null ) {
System.err.println("Can not wrtie file: " + filePath );
}
else {
isWrite = true;
doc = DocumentBuilderFactory.newInstance().newDocumentBuilder().newDocument();
rootElement = doc.createElement("opencv_storage");
doc.appendChild(rootElement);
}
} catch(Exception e) {
e.printStackTrace();
}
}
public Mat readMat(String tag) {
if( isWrite ) {
System.err.println("Try read from file with write flags");
return null;
}
NodeList nodelist = doc.getElementsByTagName(tag);
Mat readMat = null;
for( int i = 0 ; i<nodelist.getLength() ; i++ ) {
Node node = nodelist.item(i);
if( node.getNodeType() == Node.ELEMENT_NODE ) {
Element element = (Element)node;
String type_id = element.getAttribute("type_id");
if( "opencv-matrix".equals(type_id) == false) {
System.out.println("Fault type_id ");
}
String rowsStr = element.getElementsByTagName("rows").item(0).getTextContent();
String colsStr = element.getElementsByTagName("cols").item(0).getTextContent();
String dtStr = element.getElementsByTagName("dt").item(0).getTextContent();
String dataStr = element.getElementsByTagName("data").item(0).getTextContent();
int rows = Integer.parseInt(rowsStr);
int cols = Integer.parseInt(colsStr);
int type = CvType.CV_8U;
Scanner s = new Scanner(dataStr);
s.useLocale(Locale.US);
if( "f".equals(dtStr) ) {
type = CvType.CV_32F;
readMat = new Mat( rows, cols, type );
float fs[] = new float[1];
for( int r=0 ; r<rows ; r++ ) {
for( int c=0 ; c<cols ; c++ ) {
if( s.hasNextFloat() ) {
fs[0] = s.nextFloat();
}
else {
fs[0] = 0;
System.err.println("Unmatched number of float value at rows="+r + " cols="+c);
}
readMat.put(r, c, fs);
}
}
}
else if( "i".equals(dtStr) ) {
type = CvType.CV_32S;
readMat = new Mat( rows, cols, type );
int is[] = new int[1];
for( int r=0 ; r<rows ; r++ ) {
for( int c=0 ; c<cols ; c++ ) {
if( s.hasNextInt() ) {
is[0] = s.nextInt();
}
else {
is[0] = 0;
System.err.println("Unmatched number of int value at rows="+r + " cols="+c);
}
readMat.put(r, c, is);
}
}
}
else if( "s".equals(dtStr) ) {
type = CvType.CV_16S;
readMat = new Mat( rows, cols, type );
short ss[] = new short[1];
for( int r=0 ; r<rows ; r++ ) {
for( int c=0 ; c<cols ; c++ ) {
if( s.hasNextShort() ) {
ss[0] = s.nextShort();
}
else {
ss[0] = 0;
System.err.println("Unmatched number of int value at rows="+r + " cols="+c);
}
readMat.put(r, c, ss);
}
}
}
else if( "b".equals(dtStr) ) {
readMat = new Mat( rows, cols, type );
byte bs[] = new byte[1];
for( int r=0 ; r<rows ; r++ ) {
for( int c=0 ; c<cols ; c++ ) {
if( s.hasNextByte() ) {
bs[0] = s.nextByte();
}
else {
bs[0] = 0;
System.err.println("Unmatched number of byte value at rows="+r + " cols="+c);
}
readMat.put(r, c, bs);
}
}
}
}
}
return readMat;
}
public void writeMat(String tag, Mat mat) {
try {
if( isWrite == false) {
System.err.println("Try write to file with no write flags");
return;
}
Element matrix = doc.createElement(tag);
matrix.setAttribute("type_id", "opencv-matrix");
rootElement.appendChild(matrix);
Element rows = doc.createElement("rows");
rows.appendChild( doc.createTextNode( String.valueOf(mat.rows()) ));
Element cols = doc.createElement("cols");
cols.appendChild( doc.createTextNode( String.valueOf(mat.cols()) ));
Element dt = doc.createElement("dt");
String dtStr;
int type = mat.type();
if(type == CvType.CV_32F ) { // type == CvType.CV_32FC1
dtStr = "f";
}
else if( type == CvType.CV_32S ) { // type == CvType.CV_32SC1
dtStr = "i";
}
else if( type == CvType.CV_16S ) { // type == CvType.CV_16SC1
dtStr = "s";
}
else if( type == CvType.CV_8U ){ // type == CvType.CV_8UC1
dtStr = "b";
}
else {
dtStr = "unknown";
}
dt.appendChild( doc.createTextNode( dtStr ));
Element data = doc.createElement("data");
String dataStr = dataStringBuilder( mat );
data.appendChild( doc.createTextNode( dataStr ));
// append all to matrix
matrix.appendChild( rows );
matrix.appendChild( cols );
matrix.appendChild( dt );
matrix.appendChild( data );
} catch(Exception e) {
e.printStackTrace();
}
}
private String dataStringBuilder(Mat mat) {
StringBuilder sb = new StringBuilder();
int rows = mat.rows();
int cols = mat.cols();
int type = mat.type();
if( type == CvType.CV_32F ) {
float fs[] = new float[1];
for( int r=0 ; r<rows ; r++ ) {
for( int c=0 ; c<cols ; c++ ) {
mat.get(r, c, fs);
sb.append( String.valueOf(fs[0]));
sb.append( ' ' );
}
sb.append( '\n' );
}
}
else if( type == CvType.CV_32S ) {
int is[] = new int[1];
for( int r=0 ; r<rows ; r++ ) {
for( int c=0 ; c<cols ; c++ ) {
mat.get(r, c, is);
sb.append( String.valueOf(is[0]));
sb.append( ' ' );
}
sb.append( '\n' );
}
}
else if( type == CvType.CV_16S ) {
short ss[] = new short[1];
for( int r=0 ; r<rows ; r++ ) {
for( int c=0 ; c<cols ; c++ ) {
mat.get(r, c, ss);
sb.append( String.valueOf(ss[0]));
sb.append( ' ' );
}
sb.append( '\n' );
}
}
else if( type == CvType.CV_8U ) {
byte bs[] = new byte[1];
for( int r=0 ; r<rows ; r++ ) {
for( int c=0 ; c<cols ; c++ ) {
mat.get(r, c, bs);
sb.append( String.valueOf(bs[0]));
sb.append( ' ' );
}
sb.append( '\n' );
}
}
else {
sb.append("unknown type\n");
}
return sb.toString();
}
public void release() {
try {
if( isWrite == false) {
System.err.println("Try release of file with no write flags");
return;
}
DOMSource source = new DOMSource(doc);
StreamResult result = new StreamResult(file);
// write to xml file
Transformer transformer = TransformerFactory.newInstance().newTransformer();
transformer.setOutputProperty(OutputKeys.INDENT, "yes");
// do it
transformer.transform(source, result);
} catch(Exception e) {
e.printStackTrace();
}
}
}
答案 1 :(得分:1)
由于Thorben提出的代码在我的情况下放慢了速度,我使用序列化提出了以下代码。
public final void saveMat(String path, Mat mat) {
File file = new File(path).getAbsoluteFile();
file.getParentFile().mkdirs();
try {
int cols = mat.cols();
float[] data = new float[(int) mat.total() * mat.channels()];
mat.get(0, 0, data);
try (ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream(path))) {
oos.writeObject(cols);
oos.writeObject(data);
oos.close();
}
} catch (IOException | ClassCastException ex) {
System.err.println("ERROR: Could not save mat to file: " + path);
Logger.getLogger(this.class.getName()).log(Level.SEVERE, null, ex);
}
}
public final Mat loadMat(String path) {
try {
int cols;
float[] data;
try (ObjectInputStream ois = new ObjectInputStream(new FileInputStream(path))) {
cols = (int) ois.readObject();
data = (float[]) ois.readObject();
}
Mat mat = new Mat(data.length / cols, cols, CvType.CV_32F);
mat.put(0, 0, data);
return mat;
} catch (IOException | ClassNotFoundException | ClassCastException ex) {
System.err.println("ERROR: Could not load mat from file: " + path);
Logger.getLogger(this.class.getName()).log(Level.SEVERE, null, ex);
}
return null;
}
对于描述符,OpenCV使用浮点数松块,在其他情况下,您必须根据找到的here列表修改代码:
CV_8U and CV_8S -> byte[]
CV_16U and CV_16S -> short[]
CV_32S -> int[]
CV_32F -> float[]
CV_64F-> double[]
答案 2 :(得分:0)
在搜索完所有答案后,我编辑了一些代码,看起来很有效。我用它将Sift Descriptor存储到HBase中。
public static byte[] serializeMat(Mat mat) {
ByteArrayOutputStream bos = new ByteArrayOutputStream();
try {
float[] data = new float[(int) mat.total() * mat.channels()];
mat.get(0, 0, data);
ObjectOutput out = new ObjectOutputStream(bos);
out.writeObject(data);
out.close();
// Get the bytes of the serialized object
byte[] buf = bos.toByteArray();
return buf;
} catch (IOException ioe) {
ioe.printStackTrace();
return null;
}
}